Entropy Enhancement in a Chaos-Based Random Bit Generator

T. Addabbo†, M. Alioto†, A. Fort†, S. Rocchi† and V. Vignoli†

† Dept. of Information Engineering, University of Siena
Via Roma, 56 - Siena 53100, Italy
Email: vignoli@dii.unisi.it

1. Introduction

An ideal True Random Bit Generator (TRBG) is a discrete time memoryless binary source with unbiased symbols that presents a Shannon Entropy of 1 bit/time-step. In practical TRBG circuit implementations the entropy, which is a quantity strictly dependent on the unpredictability and the randomness degree of the generated sequences, is lower than 1 bit/time-step. Since the entropy level can not be increased by means of deterministic post-processing algorithms without decimation or compression (i.e. without lowering the TRBG throughput), design approaches that achieve an adequate entropy at full throughput are of practical interest [1]. In most of the chaos-based TRBGs (see e.g. [1]-[3]), the theoretical knowledge about the chaotic system information generation mechanism allows for setting the nominal entropy arbitrarily close to the ideal maximum Shannon limit [4]. Nevertheless, the behavior of a chaotic circuit is in general highly sensitive to the tolerances of the implementation process, and therefore the actual entropy of the TRBG circuit often results lower than its designed nominal value [4]. In this paper, a feedback strategy to enhance the entropy of TRBG circuits based on the Sawtooth map that preserves the circuit full throughput is proposed [1], [4].

2. Chaotic TRBG circuit model

Let us consider the dynamical system (Sawtooth map)

\[
x_{n+1} = \begin{cases}
 Bx_n + A, & \text{if } x_n < 0 \\
 Bx_n - A, & \text{if } x_n \geq 0,
\end{cases}
\]

(1)

where \(x \in \mathbb{R}, A, B \in \mathbb{R}^+ \). As discussed in [2], a possible implementation of (1) requires five different ideal analog blocks: one comparator which evaluates the sign of \(x_n \), one gain block \(B \), one adder, one \(\pm A \) constant generator (driven by the comparator digital output \(S_n \)), and one delay block. In [1], [4] it is shown that a random bit sequence \(b_n \) can be obtained by just picking out the binary sequence defined by the comparator output variable \(S_n \), that assumes the logic value ‘1’ if \(x_n > 0 \), and ‘0’ otherwise. Since parameter \(A \) just represents a scaling factor, the stochastic properties of the system generating \(b_n \), hereafter indicated as TRBG, are dependent only on the parameter \(B \), which must assume values greater than 1 for the system to be chaotic and not greater than 2 to avoid the state \(x \) being attracted to \(\pm \infty \). For \(B \in [\sqrt{2}, 2] \) the two unstable fixed points \(\pi_1 = A/(1 - B) \) and \(\pi_2 = A/(B - 1) \) define an interval \(I \subset \mathbb{R} \) such that any initial state \(x_0 \in I \) triggers a sequence \(x_n \) eventually attracted into the chaotic attractor \(A = [-A, A] \subseteq I \). Under these hypotheses, different binary sequences are related to different initial conditions, and their generation probabilities are related to the state invariant probability density function (pdf) of the chaotic dynamical system [2],[1]. When \(B = 2 \) the system state \(x \) pdf in (1) approaches a stationary invariant uniform distribution over \([-A, A] \).

The amount of information supplied by a TRBG and its grade of redundancy are expressed by the Average Shannon Entropy (ASE) defined in what follows. Let be \(O_n = \{ b_0, \ldots, b_n \} \) an n-bit length generated sequence, where \(b_n \in \{0, 1\} \). If \(P(O_n) \) is the generation probability of the sequence \(O_n \), the ASE in bit/time-steps is given by

\[
ASE = \lim_{n \to \infty} \left(-\frac{1}{n} \sum_{O_n} P(O_n) \log_2 P(O_n) \right)
\]

(2)

where the summation extends over all the generable sequences and the limit is approached from above [2]. Kocarev and Stojanovski showed in [4] that the ASE of the TRBG is an increasing function of the parameter \(B \), and that it reaches the upper ASE limit of 1 bit/time-step for \(B = 2 \). This result focuses the trade-off imposed to the TRBG circuit designer: to avoid the \(B \) value being greater than 2 (also accounting for the actual circuit tolerances) while trying to achieve a \(B \) value as close as possible to this limit in order to maximize the ASE.

2.1. Modeling the non-idealities

In Fig. 1 a modified block diagram that accounts for the most important non-idealities of circuits implementing (1) is shown, and in (3) the corresponding modified map is
Equation (3) can be rearranged as
\[
x_{n+1} = \begin{cases}
Bx_n + W + Z_B, & \text{if } x_n < P \\
Bx_n - W + Z_B, & \text{if } x_n \geq P,
\end{cases}
\] (4)
where \(W = A', Z_B = B \cdot OS_B + OS_A \), and \(P = OS_C \). The parameters \((W, Z_B, P)\) determine the map scale factor and the map position in the plane \((x_n, x_{n+1})\), while the parameter \(B \) sets the slope of the map (Fig.2).

2.2. Equivalent dynamical systems

In this paper two different dynamical systems (4) are said equivalent if they define two TRBGs characterized by the same stochastic properties (i.e. for each binary sequence \(O_n \) the generation probability \(P(O_n) \) is equal for both of the TRBGs). From this point of view, it has been proved by the authors in [2] that two systems (4) with a same \(B \) value are equivalent (and therefore the statistical properties of the output bit sequences \([b_n] \) are equal) if they have the same central distance \(D \), where \(D \) is defined as
\[
D = \frac{P(B-1) + Z_B}{W \sqrt{2}}.
\] (5)
Referring to Fig.2, the absolute value of \(D \) is equal to the Euclidean distance of the point \(C = (P, BP + Z_B) \), in the plane \((x_n, x_{n+1})\), from the bisector of the first and third quadrants, normalized to \(W \). Accordingly, for any given \(B \) value, systems described by (4) are equivalent to the following equivalence class representative dynamical system:
\[
x_{n+1} = \begin{cases}
Bx_n + 1 + D \sqrt{2}, & \text{if } x_n < 0 \\
Bx_n - 1 + D \sqrt{2}, & \text{if } x_n \geq 0.
\end{cases}
\] (6)
Moreover, given \(B \), systems (1) and (4) are equivalent (and therefore the corresponding TRBGs have the same ASE) if the central distance \(D \) of (4) is zero, that is if
\[
P(B-1) = -Z_B.
\] (7)

3. Enhancing the ASE: map correction

When the central distance \(D \) is not zero, to avoid the state \(x \) of (4) to jump beyond the fixed points \(\pi'_1 \) and \(\pi'_2 \) (Fig.2) and to be attracted toward infinity (with a consequent electronic saturation in practical implementations), \(B \) must satisfy the relationship
\[
1 < B \leq \frac{2}{1 + |D| \sqrt{2}} \leq 2.
\] (8)
According to (8), the quantity \(|D| \) determines an upper bound for the parameter \(B \) which fixes the rate of mixing of the chaotic map [1], and if \(D \) tends to zero, the maximum allowed \(B \) value tends to 2. Therefore, as discussed in [2], a non-zero central distance \(D \) determines also an upper bound for the ASE achievable by the TRBG. This point has
been investigated by the authors on the basis of the computation of the asymptotic invariant pdf of the dynamical system (6) (Fig. 3).

The ASE maximization procedure proposed in this paper is based on the fact that the two parameters \(D \) and \(B \) are sufficient for determining the stochastic properties of the TRBG. First of all, from (7), if \(B \) is kept constant, \(D \) can be zeroed by changing either the parameter \(P \) or the parameter \(Z_B \), that is, referring to Fig.1, by injecting just one correction offset either in the adder \(\Sigma_1 \) or in the adder \(\Sigma_2 \). Once minimized \(D \) with a further correction \(B \) can be increased according to (8).

In practical systems the required exact values of the correction signal for \(D \) and \(B \) are not available, since the quantities \(OS_A \), \(OS_B \), and \(OS_C \) are not known. Nevertheless, the values of the correction signals for \(D \) and \(B \) can be obtained from the statistical analysis of the generated binary sequences, as it was discussed by the authors in [2]. In particular, if \(P(b_n = 1) \) is the probability for the \(n \)-th binary output to take the ‘1’ logic value, and if \(\mu = (P(b_n = 1) - 0.5) \) for \(n \to +\infty \), the authors showed that for each \(B \) value the parameter \(\mu \) is a monotonic function of \(D \), and that \(\mu = 0 \) when \(D = 0 \). As a consequence, the sign estimation of \(\mu \) can be used to minimize \(|D| \) [2]. Anyway, since the upper ASE limit of 1 bit/time-step is reached when \(B = 2 \) (Fig. 3), and due to the upper limit for \(D \) given by (8), the ASE is maximized if both \(D \to 0 \) and \(B \to 2 \). Summarizing, the simplest way to drive system (4) to a desired operating point \((B_{\text{max}}, |D|_{\text{min}})\), where \(B_{\text{max}} \) is the maximum value of \(B \) according to (8) given \(|D|_{\text{min}} \) is to iteratively minimize the central distance magnitude \(|D| \), exploiting the estimation of the \(\mu \) sign, and then increase \(B \) until the divergence of the state orbit is detected [2].

4. Correction signals resolution and worst case ASE

As discussed in the previous section, two correction signals \(S_B \) and \(S_D \) are sufficient for correcting the map: the former signal is used for changing the amplification \(B \) of the gain block in Fig.1, whereas the signal \(S_D \) is used to minimize \(D \). Even if the correction technique described above may be used to drive system (4) to any desired operating point \((B_{\text{max}}, |D|_{\text{min}})\) arbitrarily close to the optimum point \((2, 0)\), in practical realizations the precision of the correction system is limited by the physical resolution of signals \(S_D \) and \(S_B \). Accordingly, by denoting with \(\delta_B \) and \(\delta_D \) the minimum variations effectively achievable on gain \(B \) and on signal \(S_D \) respectively, a worst case operating point \((B_{\text{max}}, |D|_{\text{min}})_{\text{wc}}\) can be estimated as a function of \(\delta_B \) and \(\delta_D \). In particular, when injecting the correction signal \(S_D \) in node \(\Sigma_i \) (a similar analysis can be carried out considering the injection of \(S_D \) in node \(\Sigma_2 \)), the map (3) must be modified as

\[
 f'(x_n) = \begin{cases}
 B (x_n + OS_B) + A' + OS_A, & \text{if } x_n < OS_C + S_D \\
 B (x_n + OS_B) - A' - OS_A, & \text{if } x_n \geq OS_C + S_D.
\end{cases}
\]

According to (5), since \(D \) for the system (9) is equal to

\[
 D = \frac{OS_C(B - 1) + OS_A + B \cdot OS_B}{A \sqrt{2}}, \quad (10)
\]

\(D \) is zeroed if

\[
 S_D = \frac{OS_C(B - 1) + OS_A + B \cdot OS_B}{1 - B}, \quad (11)
\]

In the worst case it can be assumed that, after the \(|D| \) minimization, the \(S_D \) actual value differs from (11) by the quantity \(\delta_D/2 \), and we can write

\[
 |D|_{\text{min}} \leq \frac{(B - 1)\delta_D}{2A' \sqrt{2}} = D_0. \quad (12)
\]

If, once minimized \(|D| \), also the \(B \) value is changed by \(S_B \), the value of \(D \) changes due to (5). In detail, if \(B \) is increased by \(\delta_B \), (12) is modified according to

\[
 |D|_{\text{min}} \leq D_0 + \frac{\delta_B}{A' \sqrt{2}} \left(\frac{|OS_B|_{\text{max}} + |OS_A|_{\text{max}}}{B - 1} + \frac{\delta_D}{2} \right). \quad (13)
\]

The upperbounds expressed in (8) and (13) represent the worst case limit for the control system, and in practical realizations, even if performing the correction, a worse case operating point \((B_{\text{max}} < 2, |D|_{\text{min}} > 0)_{\text{wc}}\) must be taken into account. This limit, that depends on the resolution of the correction signals, identifies the minimal guaranteed ASE for the corrected TRBG.

5. Experimental results and conclusions

The proposed correction procedure, described in detail in [2], was tested on a prototype TRBG circuit implemented by a Field Programmable Analog Array (FPAA Anadigm AN212E04). This SRAM based device can be dynamically reconfigured by an host processor while the old configuration is still active and running. The activation
of the new configuration happens in real time, allowing for an easy implementation of the proposed ASE maximization strategy. The gain block B in Fig. 1 was implemented using a FPAA library adjustable gain block, whose profile of gain versus control voltage was specified to linearly vary within the nominal range $1.4 \div 2.08$ with an experimentally verified resolution $\delta_B \approx 2 \cdot 10^{-2}$ for the working frequency of 250 kHz. The control and correction procedure for the ASE maximization was software implemented on a PC equipped with an acquisition board (National PCI MIO64E) for acquiring the TRBG output, and whose 12 bit D/A converters, with a proper scaling, provided the control signals S_B and S_D. The correction system was tested using an experimentally verified resolution $\delta_D \approx 5 \cdot 10^{-3}$, while setting for the map parameter A in (1) an equivalent voltage nominal value of $1.8V$. With the aim of emulating different combined effect of OS_A, OS_B and OS_C (that depend on the specific circuit implementing the map), exploiting the finest resolution of the PCI MIO64E device at disposal, several initial operative conditions were forced to the prototype by adding random offsets to the correction signals [2]. Partial ASE values as high as 0.99 bit/time-step (for word lengths up to 16 bit) were experimentally achieved at the maximum allowed speed of 250 kHz, without performing any kind of digital post-processing on the output bit sequences. This result agrees with the theoretical worst case ASE obtainable considering Fig. 3 and the upper bounds (8) and (13), evaluated referring to the typical value of OS_A, OS_B and OS_C obtainable from the FPAA data sheet [2]. In Fig. 4 and 5 the effect of the correction procedure on the actually implemented map is shown. In each tested case, it has been estimated that after the correction the prototype was working with B values not lower than 1.99, obtaining an invariant distribution of the state over the chaotic attractor very close to the ideal uniform distribution theoretically achievable for $B = 2$. These results were obtained with resolutions of the correction signals S_B and S_D lower than the actual resolution normally achievable in accurate-designed integrated analog circuits.

Without post-processing, the proposed generator was able to issue sequences passing the FIPS 140.2 tests with a success rate higher than 98%, while typically failing only 4 of 18 Diehard tests [2]. On the other hand, with the direct bit-by-bit XOR with the output of a 8 bit Linear Feedback Shift Register, the sequences of the proposed TRBG passes all of the considered tests at full throughput.

The effectiveness of the proposed technique, proved from a theoretical point of view, is not tied to the specific implementation presented in this paper, and can be successfully applied also to integrated designs with an increase in the output bit rate of up to two order of magnitude, with state of the art CMOS technologies, with respect to the FPAA implementation.

References

