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Abstract

Cooperation in multi-pursuer games is known to be useful. However, it is not easy to quantify how much
it is convenient for the pursuers to play according to a centralized strategy with respect to a decentralized
one. This paper provides an answer to this question, for the problem of three pursuers chasing a single
evader in a planar environment. It is shown that centralized pursuit algorithms can halve the time
required to capture the evader, with respect to decentralized pursuit strategies. Moreover, this limit is
proven to be tight. Numerical computations of lower bounds to the ratio between the capture times
of centralized and decentralized strategies, show that for several game initial conditions the benefit of

playing in a centralized way may be significantly less than halving the game duration.
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1. Introduction

Pursuit-evasion games have attracted researchers since long time, due to both the intriguing theoretical
questions they pose and the wide variety of applications. The interested reader can refer to [1] for a
historical perspective and to [2] for a taxonomy of the many different problem settings and solutions
proposed in the literature. The classical approach to these problems is to cast them as differential games
[3, 4] and then apply the vast body of results available in this context (see, e.g., [5, 6] and references
therein). However, it is well known that the characterization of optimal solutions can be very difficult
even for extremely simple problem formulations. A celebrated example is David Gale’s lion and man
problem [7], for which several suboptimal solutions have been devised [8, 9, 10], but an optimal one is
yet to be found.

The complexity of pursuit-evasion games is further increased when multiple pursuers and/or evaders
are involved. One reason why it is difficult to characterize the optimal solution of such problems is that
the reachable sets of the pursuers and the evaders are typically nonconvex or disconnected sets. It may
seem surprising that even in the basic setting of three pursuers chasing an evader in the plane, devising
successful pursuit algorithms is far from being trivial and the strategy guaranteeing capture in minimum
time is still an open problem [11]. Recent works have addressed multi-pursuer settings in which players

move with different velocities [12, 13, 14]. In particular, results in [13, 14] further motivate the study of
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the three-pursuers against one-evader game, as it captures fundamental features of more general multi-
pursuer settings. Pursuit problems in environments including obstacles or boundaries call for even more
complex strategies, relying on quite involved geometric conditions [15, 16].

A fundamental question that has not been deeply addressed so far, concerns the value of adopting
strategies based on the knowledge of the full game state (which we will refer to as “centralized”), with
respect to algorithms based only on the local information available to each player. In the former case,
information can be gathered by a supervisor or can be shared among pursuers, while in the latter, each
pursuer has to rely only on its own local knowledge. In recent years, motivated by the widespread diffusion
of new technologies allowing networks of autonomous agents to collaborate in the execution of complex
tasks, a number of centralized solutions to multi-agent pursuit-evasion games have been proposed (see,
e.g., [17, 18, 19, 20]). While it is widely recognized that the knowledge of the game state is helpful to
achieve the common goal of the team, possibly at the price of a significant communication overhead, it is
not easy to quantify the actual benefit for the agents to share information within a pursuit-evasion game.

For games involving many pursuers against a single evader, several centralized strategies have been
proposed in the literature. Although the settings may be different, the common feature is that each
pursuer’s move depends on the entire (or partial) game state. In [21], asymptotic capture is guaranteed
by collective minimization of the area of the evader’s Voronoi cell. This approach has been extended
to non-holonomic agents in [22], while uncertainty affecting the knowledge of the evader position has
been considered in [23]. The cooperative chasing of a faster evader has been addressed in [24, 25]. The
concept of dominance region has been employed in [26] to tackle a pursuit-evasion game in the presence
of obstacles. In all these works, it is apparent that the knowledge of the whole game state is a key
feature that allows the pursuers to capture the evader, but it is not clear how much it is useful. On
the other hand, it is well known that in several multi-pursuer settings the evader can be captured by
adopting decentralized strategies, like the one proposed in [27]. To the best of the authors knowledge, a
quantitative evaluation of the advantage of centralized strategies with respect to decentralized ones, has
not been provided yet, even in simple problem settings.

The objective of this paper is to investigate the benefit of adopting centralized strategies in a game
involving three pursuers chasing one evader in the plane, in terms of the time required by the pursuers
to capture the evader. The main result consists in showing that centralized algorithms can reduce the
capture time up to one half of that required by the decentralized strategy proposed in [27]. This is
achieved by first deriving the optimal evader strategy, and hence the maximum game length, for the
problem studied in [27]. Then, upper and lower bounds on the game length are obtained for a generic
centralized pursuer strategy. A further contribution is to present specific games in which such bounds are
actually achieved. The numerical evaluation of the bounds for several initial game settings shows that
the advantage of centralized strategies may be much smaller than halving the game duration. Although
the considered setup is quite simple, these results provide a first assessment of the benefits of centralized
algorithms in a pursuit-evasion game and may pave the way to further research in more complex settings.
A preliminary version of this work has appeared in [28].

The paper is organized as follows. The formulation of the three-pursuer one-evader game is given in
Section 2. Section 3 presents the optimal evader’s strategy to counteract the decentralized pursuit algo-
rithm proposed in [27]. A general lower bound on the game length, independent on the strategies adopted

by the players, is obtained in Section 4. This is instrumental to derive the main result on the advantage



of centralized strategies with respect to decentralized ones, in Section 5. Numerical evaluations of this
comparison are reported in Section 6 for several game examples. Conclusions and future developments

are discussed in Section 7.

2. Pursuit-evasion game

2.1. Notation

Let R™ be the n-dimensional Euclidean space and || - || be the Euclidean norm. The transpose of a
vector v is denoted by v’. For V,WW € R?, we denote by VW the segment with V and W as endpoints.
Let V,v € R?, then £(V,v) denotes the line passing through V with direction v, i.e.,

LV,0)={X eR* X =V +av, a € R}.

2.2. Problem formulation

A pursuit-evasion game involving three pursuers is considered. It is assumed that the players move
in an open and empty two-dimensional environment. Let E(t) € R? and P;(t) € R?, i = 1,2,3, denote
the evader and pursuers’ locations at time ¢, respectively. A first-order continuous-time motion model is
assumed for the players

{ E(t) =e(t). Q)
Pi(t) =w;(t), i=1,2,3,
where e(t) € R? and w;(t) € R?, i = 1,2,3. Moreover, we assume that the pursuers and the evader have
the same speed, set to 1 without loss of generality, i.e., ||e(t)|| = 1 and |Jw;(¢)|| = 1.
The aim of the pursuers is to capture the evader, i.e., to achieve P;(t) = E(t) for at least one

i € {1,2,3}, at some finite time ¢. The following assumption is enforced throughout the paper.

Assumption 1. The initial evader position is strictly inside the convex hull of the pursuers.

If the players move at the same speed, enforcing Assumption 1 is standard, otherwise the evader may
easily escape going straight along a direction opposite to the convex hull of the pursuers [29]. On the
contrary, if Assumption 1 holds, there exist pursuers’ strategies which guarantee capture of the evader in
finite time [29, 27].

In pursuit-evasion games, the game cost is in general a function of the entire game state (see, e.g.,
[5]). In this work, we assume as cost function the time at which capture occurs: the pursuers aim at
minimizing it, while the evader tries to maximize it. Thus, a pursuers’ strategy is said optimal (for a given
evader’s strategy) when it guarantees capture in minimum time, while an evader’s strategy is optimal
(for a given pursuers’ strategy) if it guarantees survival of the evader for the longest time. The choice
of the time-to-capture as the game cost is common in pursuit-evasion games and provides a meaningful
way to assess the performance of different pursuit strategies.

For a given configuration of the players at time ¢, let us define as V(t) the Voronoi cell associated
to the evader, i.e., the region of the plane closer to the evader than to the pursuers, at time t. Under
Assumption 1, V(t) turns out to be a triangle; let us denote by V;(t), i = 1,2, 3, its vertices. For a given

triangle V, we denote by [, m, s the longest, medium and shortest edge of V, respectively. Moreover, we



name the vertices of V such that V; is the vertex joining the longest and medium edges, while pursuers

are labeled such that P; is the pursuer farthest from V;. It can be easily observed that (see Fig. 1)
Vi = B[ > |Vi- E| , i=1,2,3. (2)

In this paper, two classes of pursuers’ strategies are considered: centralized and decentralized. A
pursuers’ strategy is said decentralized if each pursuer does not have information about the other pursuers
and chooses its motion solely on the base of its own position P;(t) and the evader position and control,
i.e.

w;(t) = mi(P(t), E(t),e(t)).

On the contrary, in the centralized case, each pursuer chooses its motion as a function of the full game

state and the control of the evader, i.e.
wi(t) = mi(Pi(t), Pa(t), Ps(t), E(t), e(t)). (3)

In both cases, we assume the evader has a complete knowledge of the state of the game and we denote

its strategy as
e(t) = o(Pi(t), Pa(t), Ps(t), E(t))-

Throughout the paper, only pursuit strategies m that guarantee capture of the evader in finite time will be
considered. The time at which capture occurs is clearly a function of the pursuers’ and evader’s strategies
and will be denoted by M (7, o).

3. Decentralized pursuit strategy

In this section, a decentralized pursuers’ strategy is recalled and the corresponding optimal evader’s
strategy is derived. The pursuers’ strategy has been proposed in [30] for the continuous-time framework
considered in this paper, and in [27] (under the name “Planes”) within a discrete-time setting. Such a
strategy is designed in R™ and it guarantees capture in finite time under Assumption 1. In this paper,
we will restrict the analysis to the two-dimensional space.

Let Ci(t) = (P;(t)+ E(t))/2 and 2(t) = P;(t)— E(t), i = 1,2, 3. Denote by z;(t)* a vector orthogonal
to z;(t) and set

Bi(t) = L(E(t),e(t)) N L(C; (1), z ()L .

Let us define the pursuers’ motion w;(t), i = 1,2, 3, as follows (see Fig. 1)

e(t) if z;(t)e(t) <0, (4a)
wi(t) = mpi(Fi(t), E(t),e(t)) = {  B;(t) — Pi(t)

1Bt — B(0)] if z;(t) e(t) > 0. (4b)

We refer to the decentralized pursuers’ strategy in (4a)-(4b) as D-strategy. In words, when the evader
moves towards an edge of the Voronoi cell (condition (4b)), the corresponding pursuer makes a specular
move which leaves the edge unchanged. Conversely, if the evader moves away from an edge of the Voronoi
cell (condition (4a)), the pursuer makes the same move of the evader, thus causing a shrinking of the

Voronoi cell (in Fig. 1, this occurs for pursuer Ps). It is worth remarking that in the latter case, the
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Figure 1: Example of pursuers’ moves based on the D-strategy. According to (4b), P1 and P> move towards B; and Ba,

respectively. Pursuer P3 moves parallel to e(t), obeying to (4a).

direction of the edge of the Voronoi cell does not change. Therefore, all the Voronoi cells throughout the
entire game are similar triangles, no matter of the path followed by the evader.

In the sequel, an optimal evader’s strategy is devised for games in which the pursuers play the D-
strategy. Let us name such strategy as £. It is worthwhile to notice that there exist several evader
strategies which lead to the same optimal capture time; we will just focus on one of them.

Let E(0), P;(0), i = 1,2, 3, be given, and let V(0) be the corresponding Voronoi cell. Without loss
of generality let us assume the longest edge of V(0) be [|[V1(0) — V2(0)|| = I. Define the unitary vectors

connecting the vertices of V(0) as

L )=V
9= W) =V 0)]

Recalling that, by definition of Vi, |[V41(0) — V5(0)|| > [|V2(0) — V5(0)||, denote by @ and S the
intersection points between the line passing through E(0) parallel to v12 and V;(0) — V5(0) and V5(0) —

i#7. (5)

V3(0), respectively (see Fig. 2), i.e.,

Q = Vi(0)V3(0) N L(E(0),v12) , (6)
S = V2(0)V3(0) N L(E(0), v12) - (7)
Let us define
Q—-E() ~ 0 -Q

CET o -EO) T ™M T o) -l

Let us now formulate the evader’s strategy £ as follows (see Fig. 2).
a) From E(0) the evader moves along vgr to Q.
b) Once in @, it moves along vy, to Vi(0).

¢) Once in V4 (0), it moves towards V5(0), until it reaches the farthest vertex of the current Voronoi cell,

where it is captured.



Remark 1. In the formulation of the E-strategy and in the rest of the paper, we adopt a slight abuse
of terminology in order to simplify the exposition. When it is stated that the evader moves to a point
which lies on the boundary of V, it is actually meant that it moves to an interior point of V which is
arbitrarily close to the boundary. Indeed, such a move is always feasible and safe, due to the fact that
the evader can reach any point inside V without being captured, by definition of the Voronoi cell. For
instance, referring to stage a) of the E-strategy, the evader will actually move along vor to a point Q € V
such that H@ — Q| <4, for a small § > 0, and then switch to stage b). Thus, the resulting path traveled
by the evader before being captured (and consequently also the game length) will be functions of 6 and the
supremum of such values can be achieved by letting § tend to 0. In this respect, all the results presented
in the paper must be intended as limit results, for 6 — 0.

o P5(0)

V3(0) Valm) Vi)

o P5(0)

Figure 2: Sketch of the evader’s strategy £. The evader follows the dotted arrows performing a 3-step path. In the first
step, it moves from Ey to @, while in the second one it goes towards V1(0). Finally, in the third step, it reaches Va(72)
where the capture occurs. The Voronoi cells at the beginning of steps 1 (V(0)), 2 (V(71)) and 3 (V(72)) are depicted in
black, red and blue, respectively.

The next theorem states that the £-strategy is optimal for the evader when the pursuers play the

D-strategy, and provides the related game length Mp.

Theorem 1 (Game length for decentralized strategy). Let the pursuers play the D-strategy and
the evader play the E-strategy. Then, the game will terminate after a time

Mp =S = Q[+ Q- V(0)]- (8)
Moreover, the E-strategy is optimal for the evader, i.e.

Mp = sup M(np, ) (9)

where the supremum in (9) is taken over all possible evader strategies.
Proof: See appendix. O

Remark 2. In [30], an upper bound to the capture time is reported for the generic game played in R™
inwvolving m pursuers. Let z; = P; — E, by fixzing n = 2 and m = 3, such bound turns out to be

max_ ||z
i=1,2,3

P=—(c
do ’



with ,
. Pz
dp = min max —-.
lIpll=1=1,2,3 ||z
It can be shown that Bp is in general much larger than the exact capture time given by Theorem 1.
In fact, for 10° randomly generated game initial conditions, the ratio between Bp and Mp turned out
ranging from about 1.2 to over 3000.

4. A general lower bound on capture time

Assume now that the pursuers have access to the full game state and play a centralized strategy (3).
The next theorem gives a lower bound B on the capture time, i.e., the evader, playing a suitable strategy,

may avoid capture for at least a time B, for any possible pursuers’ strategy.

Theorem 2 (Lower bound on time-to-capture). No matter which strategy is played by the pur-
suers, the evader is able to survive for at least a time B, where

1
B= max 3 (IVi(0) = RO)]| + [Vi(0) - EO)]) (10)
= max (1Vi(0) = EO) + 5 (IV:0) = PO)]| = [V:(0) — EO)])). (1)

Proof: Let us consider the following evader’s strategy. From its initial position F(0), it moves straight
to V;(0) for a time 7, = [|E(0) — V;(0)|| for a given ¢ € {1,2,3}. Since V;(0) € V(0), it can be arbitrarily
approached, irrespectively of the pursuers’ strategy.

Let dy = ||P;(0) — V;(0)]]. By (2), one has

do = [[P:(0) = Vi(0)[| > [E(0) = Vi(0)[| = 1. (12)

Since the speed of the pursuers is set to 1, by (12) the distance between the evader and the pursuer

P; at time 7 is such that
| Pi(m1) — E(m)[| = [|[Pi(r1) = Vi(0)[| = || P5(0) = Vi(O)|| = 71 = do — 71 > 0.

Define d,, =dy — 11 > 0. Let Z = (E(71) + Pi(71))/2 be the midpoint between E(7;) and P;(71). By
the definition of Voronoi cell, Z lies on the boundary of V(71). Assuming the evader goes straight to Z,
it covers a distance

HZ N E(TI)H _ HPl(Tl) ; E(Tl)H > % 7

and then it is captured in Z. Hence, the time needed to cover the entire path turns out to be

dr do —
T2T1+71:7'1+ 0 Tl:

1 1
= S+ do) = S(IVO) - BO)I+V:0) - RO)I). (13)
Therefore, the right hand side of (13) is a lower bound to the evader’s survival time. By taking the
maximum with respect to ¢ = 1,2, 3, one gets the lower bound B in (10). The expression (11) follows

from straightforward manipulations. O



5. Advantages of centralized pursuit strategies

The aim of this section is to assess the potential advantage of centralized pursuit strategies with
respect to decentralized ones, and in particular to the D-strategy introduced in Section 3. Let us denote

by C the optimal centralized pursuers’ strategy and by M the related maximum capture time, i.e.

Mec = infsup M (~, o) (14)

The main result of this section consists in showing that M¢ cannot be smaller than %MD, thus meaning
that the maximum advantage of centralized pursuit strategies amounts to halving the capture time,
with respect to decentralized ones. The following lemmas are instrumental to prove the main results.

Hereafter, the time dependence is omitted when it is clear from the context.
Lemma 1. Let the pursuers play the D-strategy and let | denote the longest edge of V. Then

Mp <1. (15)
Proof: Let Q and S be defined as in (6)-(7) and assume | = ||[V; — V3||, see Fig. 3. It holds

Vi = Vsl _ lQ = Vsl _ [[Va — V&l — [Q — Vsl
Vi=Valll@=5I  [IVi=Val - [lQ -5l

Since ||V1 — V|| < ||Vi — Vz|| one has
Vi = Vsl = 1@ = V3|l < [[VA = Va| - |Q — S|,

or equivalently
1Q =Wl < Vi = Val| =@ — S]]

So, by Theorem 1,

Mp =[Q-S[+l@-Wl<lQ-S[+[Vi-Va| Q-S| =L.

v, 2%
Figure 3: Illustration of the maximum game length Mp when pursuers play the D-strategy. Since players’ speed is set to

1, Mp corresponds to the length of the bold line, i.e., Mp = [|Q — S|| + [|Q — V|| It also coincides with the length of the
evader path depicted in Fig. 2.

Lemma 2. Let B be given as in Theorem 2 and let | denote the longest edge of V. Then,

B>1)2. (16)



Proof: Let | = ||V1 — V2. By the triangle inequality,
2max{||[E = WVi[|, [ E = Va[[} > [|E = Vi|| + [|[E = V|| > [[Vi = Vo = 1.
By (2) and (11), one has

B> max |V Bl > max{|E - Vil | E - Vall} > 1/2.

We are now ready to prove the main result of the section.

Theorem 3 (Advantage of centralized strategies). Let Mp be given by (8) and Mc be the optimal
game length in a centralized pursuers’ setting. Then,

Me < Mp < 2Me. (17)

Proof: According to (9) and (14), one has M¢ < Mp. By Lemmas 1 and 2, it turns out that
Mp <1<2B<2Mc, (18)

where the last inequality comes from the fact that B is a lower bound on the game length for any pursuers’
strategy, as stated by Theorem 2. O

In the sequel, we show that there indeed exist games in which

Me = Mp, (19)
and others in which )
Mc = 5 Mp, (20)

thus meaning that both bounds in (17) are tight.
Theorem 4 (Tightness of lower bound). There exist games such that Mc¢ = Mp.

Proof: To prove the theorem, we show that there exist games for which Mp = B. In fact, being B <
Me < Mp, then Mp = B implies Mz = Mp. Let us choose a game initial condition such that V is
a right triangle and let us adopt the notation shown in Fig. 4 in which Mp = ||S — Q| + ||Q — V4|
Since SQ is the hypotenuses of the triangle with vertices S, @ and V3, by Theorem 1, one easily gets
Mp > ||Vi — V|| = m. Moreover, by (15), it holds

Let the smallest edge s shrink to 0. One has

lim ! = lim \/m?2 + s2 = m,

s—0 s—0

and hence
lim Mp =m. (21)

s—0

Moreover, it is easy to show that as s — 0, P;, ¥ and V; tend to be collinear. This implies that

m ([|[Vi — Pi|| = [|[Vi — E|)) = lim ||P, — E|.
s—0

li
s—0



Vs
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v Q Y
Figure 4: Proof of Theorem 4. The length of the bold line is equal to Mp. As [|[Vo — V3|| — 0, both Mp and B tend to

[[Vi — V3]| and then Mp — B, thus implying Mp = M.

By (11), one has

. : 1 . 1

lim B > lim <||V1 —E|+=(|Vi — P = Vi — E|)> = lim <||V1 —E|+ < ||P - E|> =m. (22)
s—0 s—0 2 5s—0 2

Since Mp > B, by (21) and (22) one has

lim Mp = lim B =m,
s—0 s—0

which concludes the proof. 0
Theorem 5 (Tightness of upper bound). There exists games such that Mp = 2Mc.

Proof: We show that there exist games in which Mz = B and Mp = 2B. Let V(0) be the isosceles triangle
depicted in Fig. 5. Define H, Ty, T» the projections of V3(0), P;(0), P»(0) on V;(0)V(0), respectively. Let
the evader initially lie on the segment V3(0)H, define ¢ = ||V3(0) — H|| and K = E(0) 4+ 2(V3(0) — E(0)).
Since [[V5(0) — PL(0)[| = [[V5(0) — E|| = [[V3(0) — K| one has

[1PL(0) = Thf < [[PL(0) = V5 (0)[| + [[V3(0) — H||
= [IV3(0) = K|l + [IV3(0) — H]|
< 2([V5(0) — HI| = 2. (23)

Now, let € tend to 0. In Fig. 5, Mp corresponds to the length of the bold line. By following a similar

reasoning as in the proof of Theorem 4, one has
lim Mp = lim S — Q| + [|Q — V1(0)[| = [[V2(0) — V1(0)]- (24)
e—0 e—0

Let us now introduce a two-step centralized pursuers’ strategy, denoted by C. Let vor = Q — E(0).
Assume first that the evader starts moving in the half-plane vgge(t) > 0, i.e., the evader moves to the
right in Fig. 5 (the case in which the evader starts moving in the opposite direction is similar). The

strategy C is defined as follows.

a) Initially, P moves towards T7, while P, and Ps; move symmetrically to the evader with respect to
V1(0)V3(0) and V;(0)V2(0), respectively, see Fig. 6.

b) As soon as (P} — E) is parallel to (V5 — V3), pursuers play the decentralized strategy D until capture

occurs.

10
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s ‘ E(O) Q
V(0) Py
V5(0) nH T V1(0)
P3(0)

Figure 5: Proof of Theorem 5. Illustration of the Voronoi cell V at time 0 and of projections 77, T3 and H. The length of

the bold line corresponds to Mp.
£(0) P(0)

Ty Py(1)

Figure 6: Proof of Theorem 5. First step of strategy C. Players move along the dotted arrows. Pursuer P; moves downward,

while P, and P3 move symmetrically to the evader w.r.t. the segments V;(0)V3(0) and Vi(0)V2(0), respectively. Voronoi
cells V at time 0 and at time 7 are depicted in black and red, respectively. As the triangle get squeezed, due to ||[Va—H|| — 0,
one has Mp — 2Me, i.e., the decentralized D-strategy needs a double time to capture the evader, w.r.t. the (?—strategy.

Notice that in step a), P» and P; move in such a way to guarantee that Vi, vi2 and v13 remain the
same, where v12 and vy3 are defined as in (5). Therefore, there exists a finite time 7 at which the C
strategy switches from step a) to step b). Since, by (23), || P1(0) — T3 || < 2e, one has 7 < 2¢. Notice that,
by letting € tend to 0, the duration of step a) can be made arbitrarily short. Now, let  be the duration of
step b), until capture occurs. Hence, Mz = 7+ 7 < 2 + 7. Observe that, due to the switching condition
to step b), at time 7 the Voronoi cell becomes a right triangle like the one in the proof of Theorem 4, see
Fig. 6. So, by using the same argument as in the proof of Theorem 4, one has lim._,on = ||[Vi(7) = Va(7)].
Then, it holds

lim Mg = lim 7 + || V(1) = Va(7)]
< lim 2¢ + |[Vi (7) — Va(7)||
= lim [[Vi(7) = Va(7)|
< [[va(0) — HJ,

where the last inequality comes from the fact that V4 (7) = V1(0). Thus, by (24) and by the fact that the
optimal centralized strategy is such that M¢ < Mg, one has

1 1
lim Me < lim Mg < [V1(0) — H|| = 5[[V2(0) = V1(0)[| = 5 lim Mp.
e—0 e—0 2 20
Since by (17), M¢ > Mp/2, one gets

1
hmMC:§gi_I>%MD;

e—0

11



which concludes the proof. 0

Remark 3. The two-step pursuers’ strateqy C adopted in the proof of Theorem 5 is centralized because
during step a), P1 moves orthogonally to the largest edge of V(0). Since the vertices of V(0) are defined
by the position of all the pursuers (and the evader), it is apparent that the C strategy requires that the
pursuers have full knowledge of the game state.

By Theorem 3, it follows that pursuers playing in a centralized way may reduce the game duration
by at most a factor two, with respect to pursuers adopting a decentralized strategy. For a given game,

the improvement of using a centralized strategy instead of a decentralized one can be summarized by the

index u
§==—C. 25
o (25)
By Theorem 3, it follows that
1
3 <§<1. (26)

Moreover, as stated in Theorems 4 and 5, these bounds are tight in the sense that there exist games
in which they can be achieved.

For specific game initial conditions, the index § in (25) is difficult to evaluate, because the optimal
centralized pursuers’ strategy is unknown and therefore the actual value of M cannot be computed.

Hence, it is useful to introduce the lower bound

§= (27)

B
Mp -
Since M¢ > B, one has § > §. Moreover, by (18), one has Mp < 2B and hence § > 1/2. So, the

bounds in (26) can be refined as

<8<d<l. (28)

N =

Notice that, for a specific game, the lower bound ¢ can be easily computed, since both Mp and B

can be readily evaluated by (8) and (10), respectively.

6. Numerical evaluation of lower bounds

In this section, the lower bound ¢§ is computed for a number of different game initial conditions.
Clearly, the larger is 9, the smaller improvement can be obtained by playing in a centralized manner.

In Fig. 7, some examples of initial Voronoi cells V(0) are reported. For each initial position of the
evader E(0) inside V(0), the corresponding color denotes the value of §. The positions of the pursuers
are not reported since they depend on E(0) and can be derived from V(0) and E(0).

Several remarks can be made on the results depicted in Fig. 7. First, one may notice that if £(0) is close
to a vertex of V(0) then ¢ approaches 1, and hence no improvement can be obtained by playing centralized
pursuers’ strategies. This fact is not surprising since these cases correspond to initial conditions in which
two pursuers are close to the evader and to the corresponding vertex; in this situation, the longest path
the evader may travel is towards the farthest vertex of V(0), where it will be captured, even by pursuers
playing the D-strategy.

If V(0) is an equilateral triangle (Fig. 7-a), the minimum value of § is v/3/2, which is attained when
E(0) lies in the geometrical center of V(0). If V(0) is an isosceles triangle with all acute angles, the
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performance improvement in playing centralized strategies is remarkably small: for the games reported
in Fig. 7-b, one has § > 0.968 for any possible initial condition of the evader. This means that the
maximum advantage of the pursuers playing in a centralized way with respect to the D-strategy is about
3%. A different situation arises when dealing with obtuse isosceles triangles. In this case, for a wide
obtuse angle and a suitable choice of E(0), § may approach 0.5. Notice that this is consistent with the
argument in the proof of Theorem 5. For the games illustrated in Fig. 7-c, where the obtuse angle is
equal to 165°, one has 0.526 < § < 1. Fig. 7-d reports the case of a right triangle, where § ranges from
0.901 to 1. Finally, generic obtuse and acute scalene triangles are given in Fig. 7-e and 7-f, for which
0 > 0.63 and § > 0.913, respectively.

7. Conclusions

The benefits of adopting centralized pursuit strategies with respect to decentralized ones, in the three-
pursuer single-evader game, have been quantified. The main result shows that the knowledge of the full
game state allows a pursuer team to reduce the capture time by a factor two. Although the considered
setting is admittedly simple and quite specific, the result is a first contribution towards the quantitative
evaluation of the advantages provided by centralized algorithms in pursuit-evasion games. Clearly, the
problem deserves deeper investigation in many directions. The extension to the case of n pursuers,
although non trivial, may reveal a different gap between the performance of centralized and decentralized
strategies. Further studies should consider more complex game settings, such as 3D environments, non-
holonomic motion models, different agent speeds, or the presence of obstacles. For all these scenarios,
it is believed that there is room for assessing the actual improvement provided by centralized strategies

over decentralized ones.
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Appendix A. Proof of Theorem 1

In the first step of the E-strategy, the evader goes from E(0) to Q. So, step 1 takes a time 71 =
|E(0) — Q|- In step 1, according to (4a), P; and Ps move in the same direction of the evader along
e(0) = vgg, while P, obeys to (4b) going towards (). As a result, only the smallest edge of V moves
(along e(0)), while the others remain the same. The Voronoi cell at time 7; is depicted in red in Fig. 2.

Since Vi(m1) = Vi (0) € V(71), in the second step of the E-strategy the evader moving along vy, g may
safely approach V;(0) at time 712 = 71 + 72, with 72 = ||@Q — V1(0)||. So, Vi(m12) = V1(0). Notice that, as
in the previous step, only the smallest edge of V is moving in the second step. In Fig. 2, V(73) is colored
in blue.

During the final step, the evader points towards the farthest vertex of V(72) moving along vgg. Since
the Voronoi cell at any time is a triangle similar to V(0), the farthest vertex from Vi (72) = V1(0) turns
out to be V5(72). By defining 75 = ||[V1(0) — Va(m)||, it is easy to see that 73 = ||S — E(0)]| and then the
total traveled time is 71 + 72 + 73, which coincides with (8). At such a time, the Voronoi cell collapses to
one point and capture occurs.

It remains to prove that the £-strategy is optimal when the pursuers play the D-strategy, i.e., there
exists no other evader’s strategy guaranteeing a longer survival.

At a given time 7, according to (8), let Mp(7) denote the residual game length if the pursuers and
the evader play the D-strategy and the E-strategy, respectively, from time 7 onwards. Let the evader
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move along a direction €: ||€]| = 1 for a time A7 > 0, i.e., E(t) =&, 7 <t <7+ Ar. Let Mp(r + A7)

be the corresponding residual game length at time 7 + A7. Let us define
AM(AT) = Mp(T + AT) — Mp(T). (A1)
As it has been shown above, if € € {vgg, vv,@, vse}, one has AM(AT) = —A7. Hence, along the

three directions the evader follows in the E-strategy, it holds

dMp(t) _ . AM(A7)

=—1.
dt AT—0 AT

In the following, we prove that for any direction € ¢ {vgg, vv,q, vsg} one has de—’i(t) < —1. So,
the evader will be captured in a shorter time and hence any evader’s strategy involving a move € ¢
{vQE, Vw1, vsg} cannot be optimal.

Let € = [cos(f),sin(f)]" with 6 € [0,2n]. Assume the evader moves along direction € for a time Ar.
We want to compute de—i(t) as a function of §. Let v;; be defined as in (5). Let us consider the six
directions +v19, £v13, Fve3, and the resulting six angular intervals in which they partition the interval
[0,27], as shown in Fig. A.8. Let | = ||[V; — Va|, m = ||V; — V3| and denote by ¢; and o the angles

associated to vertices Vi and Vs, respectively.

Figure A.8: Proof. of Theorem 1. The six directions given by fwvi2, £vy,3, £vas are depicted along with the related

angular intervals. If the evader does not move along one of these directions, its move is surely not optimal.

Let us start by assuming 6 € [0, p2) and derive the expression of AM (A7). Let us refer to Fig. A.9,
where V(1) and V(74 A7) are depicted in black and red, respectively. By (8), Mp(7) = ||S(7) — Q(7)|| +
1Q(7) = Vi(7)||. Tt is easy to see that |Q(T + A7) — Vi (T + A7) = |Q(7) = Vi(7)||. Let Q = Q(7) + Are
and define b = ||Q(7 + A7) — Q||, see Fig. A.9. One has

[S(r 4+ A7) = Q(r + AT)|| = [|S(7) — Q(7)| — b,
and hence

AMp(AT)=|[S(7 + A1) = Q(T + A7)|| = [|S(7) — Q(7)[|=—0.

By the law of sines, one has

b AT
sin(m — 6 — 1) - sin(p)
that is ) )
- ATsm(ﬂ'.— 0— 1) _ ATs1n.(9 + 1) .
sin(1) sin(1)
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Vi(r)
Figure A.9: Proof. of Theorem 1. The evader moves along a direction belonging to the angular interval (D of Fig. A.8. V(1)

and V(74 Ar) are depicted in black and red, respectively. The length of the blue segment b is equal to Mp (7) — Mp(T+AT).

Since b is greater than the path € traveled by the evader, the depicted move cannot be optimal.

Thus, one has

AMp(AT) = A5+ o)
sin(eq)
and hence ]
dMp(t) 1 AM(AT) _ sin(f +¢1)
dt  ar—»o0 AT sin(p1)

By using a similar reasoning, one can compute dMp(t)/dt for all the other cases. Table A.1 reports the
expressions of dMp(t)/dt for 6 belonging to the six angular intervals.

By straightforward calculus arguments, it is possible to show that such a function has three maxima
in [0,27), all equal to —1. As expected, they are achieved when 6 is equal to 0, 7 and 2w — ¢1, which
correspond to the directions vgr, vse, vv,@ adopted in the E-strategy. Therefore, any other direction

leads to a greater reduction of Mp and thus it cannot be optimal. O

Table A.1: Expressions of dMp(t)/dt as a function of 6

Case 0 interval %i(t)
1 [07 902) - %
2 2 —1) | TGS - TG
3 [7T — P1, 77) - Si;gf(;ff)
4 [m, 7 + ¢2) — et Sxlen
5 [T+ 2,27 — 1) ;;n((;)l))
o | oo | - S
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