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Abstract

Cooperation in multi-pursuer games is known to be useful. However, it is not easy to quantify how much

it is convenient for the pursuers to play according to a centralized strategy with respect to a decentralized

one. This paper provides an answer to this question, for the problem of three pursuers chasing a single

evader in a planar environment. It is shown that centralized pursuit algorithms can halve the time

required to capture the evader, with respect to decentralized pursuit strategies. Moreover, this limit is

proven to be tight. Numerical computations of lower bounds to the ratio between the capture times

of centralized and decentralized strategies, show that for several game initial conditions the benefit of

playing in a centralized way may be significantly less than halving the game duration.

Keywords: pursuit-evasion games, autonomous agents, cooperative control.

1. Introduction

Pursuit-evasion games have attracted researchers since long time, due to both the intriguing theoretical

questions they pose and the wide variety of applications. The interested reader can refer to [1] for a

historical perspective and to [2] for a taxonomy of the many different problem settings and solutions

proposed in the literature. The classical approach to these problems is to cast them as differential games

[3, 4] and then apply the vast body of results available in this context (see, e.g., [5, 6] and references

therein). However, it is well known that the characterization of optimal solutions can be very difficult

even for extremely simple problem formulations. A celebrated example is David Gale’s lion and man

problem [7], for which several suboptimal solutions have been devised [8, 9, 10], but an optimal one is

yet to be found.

The complexity of pursuit-evasion games is further increased when multiple pursuers and/or evaders

are involved. One reason why it is difficult to characterize the optimal solution of such problems is that

the reachable sets of the pursuers and the evaders are typically nonconvex or disconnected sets. It may

seem surprising that even in the basic setting of three pursuers chasing an evader in the plane, devising

successful pursuit algorithms is far from being trivial and the strategy guaranteeing capture in minimum

time is still an open problem [11]. Recent works have addressed multi-pursuer settings in which players

move with different velocities [12, 13, 14]. In particular, results in [13, 14] further motivate the study of
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the three-pursuers against one-evader game, as it captures fundamental features of more general multi-

pursuer settings. Pursuit problems in environments including obstacles or boundaries call for even more

complex strategies, relying on quite involved geometric conditions [15, 16].

A fundamental question that has not been deeply addressed so far, concerns the value of adopting

strategies based on the knowledge of the full game state (which we will refer to as “centralized”), with

respect to algorithms based only on the local information available to each player. In the former case,

information can be gathered by a supervisor or can be shared among pursuers, while in the latter, each

pursuer has to rely only on its own local knowledge. In recent years, motivated by the widespread diffusion

of new technologies allowing networks of autonomous agents to collaborate in the execution of complex

tasks, a number of centralized solutions to multi-agent pursuit-evasion games have been proposed (see,

e.g., [17, 18, 19, 20]). While it is widely recognized that the knowledge of the game state is helpful to

achieve the common goal of the team, possibly at the price of a significant communication overhead, it is

not easy to quantify the actual benefit for the agents to share information within a pursuit-evasion game.

For games involving many pursuers against a single evader, several centralized strategies have been

proposed in the literature. Although the settings may be different, the common feature is that each

pursuer’s move depends on the entire (or partial) game state. In [21], asymptotic capture is guaranteed

by collective minimization of the area of the evader’s Voronoi cell. This approach has been extended

to non-holonomic agents in [22], while uncertainty affecting the knowledge of the evader position has

been considered in [23]. The cooperative chasing of a faster evader has been addressed in [24, 25]. The

concept of dominance region has been employed in [26] to tackle a pursuit-evasion game in the presence

of obstacles. In all these works, it is apparent that the knowledge of the whole game state is a key

feature that allows the pursuers to capture the evader, but it is not clear how much it is useful. On

the other hand, it is well known that in several multi-pursuer settings the evader can be captured by

adopting decentralized strategies, like the one proposed in [27]. To the best of the authors knowledge, a

quantitative evaluation of the advantage of centralized strategies with respect to decentralized ones, has

not been provided yet, even in simple problem settings.

The objective of this paper is to investigate the benefit of adopting centralized strategies in a game

involving three pursuers chasing one evader in the plane, in terms of the time required by the pursuers

to capture the evader. The main result consists in showing that centralized algorithms can reduce the

capture time up to one half of that required by the decentralized strategy proposed in [27]. This is

achieved by first deriving the optimal evader strategy, and hence the maximum game length, for the

problem studied in [27]. Then, upper and lower bounds on the game length are obtained for a generic

centralized pursuer strategy. A further contribution is to present specific games in which such bounds are

actually achieved. The numerical evaluation of the bounds for several initial game settings shows that

the advantage of centralized strategies may be much smaller than halving the game duration. Although

the considered setup is quite simple, these results provide a first assessment of the benefits of centralized

algorithms in a pursuit-evasion game and may pave the way to further research in more complex settings.

A preliminary version of this work has appeared in [28].

The paper is organized as follows. The formulation of the three-pursuer one-evader game is given in

Section 2. Section 3 presents the optimal evader’s strategy to counteract the decentralized pursuit algo-

rithm proposed in [27]. A general lower bound on the game length, independent on the strategies adopted

by the players, is obtained in Section 4. This is instrumental to derive the main result on the advantage

2



of centralized strategies with respect to decentralized ones, in Section 5. Numerical evaluations of this

comparison are reported in Section 6 for several game examples. Conclusions and future developments

are discussed in Section 7.

2. Pursuit-evasion game

2.1. Notation

Let R
n be the n-dimensional Euclidean space and ‖ · ‖ be the Euclidean norm. The transpose of a

vector v is denoted by v′. For V,W ∈ R
2, we denote by VW the segment with V and W as endpoints.

Let V, v ∈ R
2, then L(V, v) denotes the line passing through V with direction v, i.e.,

L(V, v) = {X ∈ R
2 : X = V + αv, α ∈ R} .

2.2. Problem formulation

A pursuit-evasion game involving three pursuers is considered. It is assumed that the players move

in an open and empty two-dimensional environment. Let E(t) ∈ R
2 and Pi(t) ∈ R

2, i = 1, 2, 3, denote

the evader and pursuers’ locations at time t, respectively. A first-order continuous-time motion model is

assumed for the players {
Ė(t) = e(t) ,

Ṗi(t) = wi(t) , i = 1, 2, 3 ,
(1)

where e(t) ∈ R
2 and wi(t) ∈ R

2, i = 1, 2, 3. Moreover, we assume that the pursuers and the evader have

the same speed, set to 1 without loss of generality, i.e., ‖e(t)‖ = 1 and ‖wi(t)‖ = 1.

The aim of the pursuers is to capture the evader, i.e., to achieve Pi(t) = E(t) for at least one

i ∈ {1, 2, 3}, at some finite time t. The following assumption is enforced throughout the paper.

Assumption 1. The initial evader position is strictly inside the convex hull of the pursuers.

If the players move at the same speed, enforcing Assumption 1 is standard, otherwise the evader may

easily escape going straight along a direction opposite to the convex hull of the pursuers [29]. On the

contrary, if Assumption 1 holds, there exist pursuers’ strategies which guarantee capture of the evader in

finite time [29, 27].

In pursuit-evasion games, the game cost is in general a function of the entire game state (see, e.g.,

[5]). In this work, we assume as cost function the time at which capture occurs: the pursuers aim at

minimizing it, while the evader tries to maximize it. Thus, a pursuers’ strategy is said optimal (for a given

evader’s strategy) when it guarantees capture in minimum time, while an evader’s strategy is optimal

(for a given pursuers’ strategy) if it guarantees survival of the evader for the longest time. The choice

of the time-to-capture as the game cost is common in pursuit-evasion games and provides a meaningful

way to assess the performance of different pursuit strategies.

For a given configuration of the players at time t, let us define as V(t) the Voronoi cell associated

to the evader, i.e., the region of the plane closer to the evader than to the pursuers, at time t. Under

Assumption 1, V(t) turns out to be a triangle; let us denote by Vi(t), i = 1, 2, 3, its vertices. For a given

triangle V , we denote by l,m, s the longest, medium and shortest edge of V , respectively. Moreover, we
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name the vertices of V such that V1 is the vertex joining the longest and medium edges, while pursuers

are labeled such that Pi is the pursuer farthest from Vi. It can be easily observed that (see Fig. 1)

‖Vi − Pi‖ > ‖Vi − E‖ , i = 1, 2, 3 . (2)

In this paper, two classes of pursuers’ strategies are considered: centralized and decentralized. A

pursuers’ strategy is said decentralized if each pursuer does not have information about the other pursuers

and chooses its motion solely on the base of its own position Pi(t) and the evader position and control,

i.e.

wi(t) = πi(Pi(t), E(t), e(t)).

On the contrary, in the centralized case, each pursuer chooses its motion as a function of the full game

state and the control of the evader, i.e.

wi(t) = πi(P1(t), P2(t), P3(t), E(t), e(t)). (3)

In both cases, we assume the evader has a complete knowledge of the state of the game and we denote

its strategy as

e(t) = σ(P1(t), P2(t), P3(t), E(t)).

Throughout the paper, only pursuit strategies π that guarantee capture of the evader in finite time will be

considered. The time at which capture occurs is clearly a function of the pursuers’ and evader’s strategies

and will be denoted by M(π, σ).

3. Decentralized pursuit strategy

In this section, a decentralized pursuers’ strategy is recalled and the corresponding optimal evader’s

strategy is derived. The pursuers’ strategy has been proposed in [30] for the continuous-time framework

considered in this paper, and in [27] (under the name “Planes”) within a discrete-time setting. Such a

strategy is designed in R
n and it guarantees capture in finite time under Assumption 1. In this paper,

we will restrict the analysis to the two-dimensional space.

Let Ci(t) = (Pi(t)+E(t))/2 and zi(t) = Pi(t)−E(t), i = 1, 2, 3. Denote by zi(t)
⊥ a vector orthogonal

to zi(t) and set

Bi(t) = L(E(t), e(t)) ∩ L(Ci(t), zi(t)
⊥) .

Let us define the pursuers’ motion wi(t), i = 1, 2, 3, as follows (see Fig. 1)

wi(t) = πD,i(Pi(t), E(t), e(t)) =





e(t) if zi(t)
′e(t) ≤ 0 , (4a)

Bi(t)− Pi(t)

‖Bi(t)− Pi(t)‖
if zi(t)

′e(t) > 0 . (4b)

We refer to the decentralized pursuers’ strategy in (4a)-(4b) as D-strategy. In words, when the evader

moves towards an edge of the Voronoi cell (condition (4b)), the corresponding pursuer makes a specular

move which leaves the edge unchanged. Conversely, if the evader moves away from an edge of the Voronoi

cell (condition (4a)), the pursuer makes the same move of the evader, thus causing a shrinking of the

Voronoi cell (in Fig. 1, this occurs for pursuer P3). It is worth remarking that in the latter case, the
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Figure 1: Example of pursuers’ moves based on the D-strategy. According to (4b), P1 and P2 move towards B1 and B2,

respectively. Pursuer P3 moves parallel to e(t), obeying to (4a).

direction of the edge of the Voronoi cell does not change. Therefore, all the Voronoi cells throughout the

entire game are similar triangles, no matter of the path followed by the evader.

In the sequel, an optimal evader’s strategy is devised for games in which the pursuers play the D-

strategy. Let us name such strategy as E . It is worthwhile to notice that there exist several evader

strategies which lead to the same optimal capture time; we will just focus on one of them.

Let E(0), Pi(0), i = 1, 2, 3, be given, and let V(0) be the corresponding Voronoi cell. Without loss

of generality let us assume the longest edge of V(0) be ‖V1(0) − V2(0)‖ = l. Define the unitary vectors

connecting the vertices of V(0) as

vij =
Vi(0)− Vj(0)

‖Vi(0)− Vj(0)‖
, i 6= j . (5)

Recalling that, by definition of V1, ||V1(0) − V3(0)|| > ||V2(0) − V3(0)||, denote by Q and S the

intersection points between the line passing through E(0) parallel to v12 and V1(0)− V3(0) and V2(0)−
V3(0), respectively (see Fig. 2), i.e.,

Q = V1(0)V3(0) ∩ L(E(0), v12) , (6)

S = V2(0)V3(0) ∩ L(E(0), v12) . (7)

Let us define

vQE =
Q− E(0)

‖Q− E(0)‖ , vV1Q =
V1(0)−Q

‖V1(0)−Q‖ .

Let us now formulate the evader’s strategy E as follows (see Fig. 2).

a) From E(0) the evader moves along vQE to Q.

b) Once in Q, it moves along vV1Q to V1(0).

c) Once in V1(0), it moves towards V2(0), until it reaches the farthest vertex of the current Voronoi cell,

where it is captured.
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Remark 1. In the formulation of the E-strategy and in the rest of the paper, we adopt a slight abuse
of terminology in order to simplify the exposition. When it is stated that the evader moves to a point
which lies on the boundary of V, it is actually meant that it moves to an interior point of V which is
arbitrarily close to the boundary. Indeed, such a move is always feasible and safe, due to the fact that
the evader can reach any point inside V without being captured, by definition of the Voronoi cell. For
instance, referring to stage a) of the E-strategy, the evader will actually move along vQE to a point Q̃ ∈ V
such that ‖Q̃−Q‖ < δ, for a small δ > 0, and then switch to stage b). Thus, the resulting path traveled
by the evader before being captured (and consequently also the game length) will be functions of δ and the
supremum of such values can be achieved by letting δ tend to 0. In this respect, all the results presented
in the paper must be intended as limit results, for δ → 0.

E(0)

V2(0)

V3(0)

V1(0)

S Q

V(0) V(τ1)
V(τ2)

V2(τ1) V2(τ2)

V3(τ1)

V3(τ2)

P3(0)

P1(0)

P2(0)

Figure 2: Sketch of the evader’s strategy E. The evader follows the dotted arrows performing a 3-step path. In the first

step, it moves from E0 to Q, while in the second one it goes towards V1(0). Finally, in the third step, it reaches V2(τ2)

where the capture occurs. The Voronoi cells at the beginning of steps 1 (V(0)), 2 (V(τ1)) and 3 (V(τ2)) are depicted in

black, red and blue, respectively.

The next theorem states that the E-strategy is optimal for the evader when the pursuers play the

D-strategy, and provides the related game length MD.

Theorem 1 (Game length for decentralized strategy). Let the pursuers play the D-strategy and
the evader play the E-strategy. Then, the game will terminate after a time

MD = ‖S −Q‖+ ‖Q− V1(0)‖ . (8)

Moreover, the E-strategy is optimal for the evader, i.e.

MD = sup
σ

M(πD, σ) (9)

where the supremum in (9) is taken over all possible evader strategies.

Proof: See appendix. �

Remark 2. In [30], an upper bound to the capture time is reported for the generic game played in R
n

involving m pursuers. Let zi = Pi − E, by fixing n = 2 and m = 3, such bound turns out to be

BP =

max
i=1,2,3

‖zi‖

δ0
,
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with

δ0 = min
‖p‖=1

max
i=1,2,3

p′zi
‖zi‖

.

It can be shown that BP is in general much larger than the exact capture time given by Theorem 1.
In fact, for 106 randomly generated game initial conditions, the ratio between BP and MD turned out
ranging from about 1.2 to over 3000.

4. A general lower bound on capture time

Assume now that the pursuers have access to the full game state and play a centralized strategy (3).

The next theorem gives a lower bound B on the capture time, i.e., the evader, playing a suitable strategy,

may avoid capture for at least a time B, for any possible pursuers’ strategy.

Theorem 2 (Lower bound on time-to-capture). No matter which strategy is played by the pur-
suers, the evader is able to survive for at least a time B, where

B = max
i=1,2,3

1

2
(‖Vi(0)− Pi(0)‖+ ‖Vi(0)− E(0)‖) (10)

= max
i=1,2,3

(‖Vi(0)− E(0)‖+ 1

2
(‖Vi(0)− Pi(0)‖ − ‖Vi(0)− E(0)‖)) . (11)

Proof: Let us consider the following evader’s strategy. From its initial position E(0), it moves straight

to Vi(0) for a time τ1 = ‖E(0)− Vi(0)‖ for a given i ∈ {1, 2, 3}. Since Vi(0) ∈ V(0), it can be arbitrarily

approached, irrespectively of the pursuers’ strategy.

Let d0 = ‖Pi(0)− Vi(0)‖. By (2), one has

d0 = ‖Pi(0)− Vi(0)‖ > ‖E(0)− Vi(0)‖ = τ1 . (12)

Since the speed of the pursuers is set to 1, by (12) the distance between the evader and the pursuer

Pi at time τ1 is such that

‖Pi(τ1)− E(τ1)‖ = ‖Pi(τ1)− Vi(0)‖ ≥ ‖Pi(0)− Vi(0)‖ − τ1 = d0 − τ1 > 0 .

Define dτ1 = d0 − τ1 > 0. Let Z = (E(τ1) + Pi(τ1))/2 be the midpoint between E(τ1) and Pi(τ1). By

the definition of Voronoi cell, Z lies on the boundary of V(τ1). Assuming the evader goes straight to Z,

it covers a distance

‖Z − E(τ1)‖ =
‖Pi(τ1)− E(τ1)‖

2
≥ dτ1

2
,

and then it is captured in Z. Hence, the time needed to cover the entire path turns out to be

T ≥ τ1 +
dτ1
2

= τ1 +
d0 − τ1

2
=

1

2
(τ1 + d0) =

1

2
(‖Vi(0)− E(0)‖ + ‖Vi(0)− Pi(0)‖) . (13)

Therefore, the right hand side of (13) is a lower bound to the evader’s survival time. By taking the

maximum with respect to i = 1, 2, 3, one gets the lower bound B in (10). The expression (11) follows

from straightforward manipulations. �
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5. Advantages of centralized pursuit strategies

The aim of this section is to assess the potential advantage of centralized pursuit strategies with

respect to decentralized ones, and in particular to the D-strategy introduced in Section 3. Let us denote

by C the optimal centralized pursuers’ strategy and by MC the related maximum capture time, i.e.

MC = inf
π

sup
σ

M(π, σ) (14)

The main result of this section consists in showing that MC cannot be smaller than 1
2MD, thus meaning

that the maximum advantage of centralized pursuit strategies amounts to halving the capture time,

with respect to decentralized ones. The following lemmas are instrumental to prove the main results.

Hereafter, the time dependence is omitted when it is clear from the context.

Lemma 1. Let the pursuers play the D-strategy and let l denote the longest edge of V. Then

MD ≤ l . (15)

Proof: Let Q and S be defined as in (6)-(7) and assume l = ‖V1 − V2‖, see Fig. 3. It holds

‖V1 − V3‖
‖V1 − V2‖

=
‖Q− V3‖
‖Q− S‖ =

‖V1 − V3‖ − ‖Q− V3‖
‖V1 − V2‖ − ‖Q− S‖ .

Since ‖V1 − V3‖ ≤ ‖V1 − V2‖ one has

‖V1 − V3‖ − ‖Q− V3‖ ≤ ‖V1 − V2‖ − ‖Q− S‖ ,

or equivalently

‖Q− V1‖ ≤ ‖V1 − V2‖ − ‖Q− S‖ .

So, by Theorem 1,

MD = ‖Q− S‖+ ‖Q− V1‖ ≤ ‖Q− S‖+ ‖V1 − V2‖ − ‖Q− S‖ = l .

�

E

V2

V3

V1

S Q

Figure 3: Illustration of the maximum game length MD when pursuers play the D-strategy. Since players’ speed is set to

1, MD corresponds to the length of the bold line, i.e., MD = ‖Q − S‖+ ‖Q − V1‖. It also coincides with the length of the

evader path depicted in Fig. 2.

Lemma 2. Let B be given as in Theorem 2 and let l denote the longest edge of V. Then,

B ≥ l/2 . (16)
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Proof: Let l = ‖V1 − V2‖. By the triangle inequality,

2max{‖E − V1‖, ‖E − V2‖} ≥ ‖E − V1‖+ ‖E − V2‖ ≥ ‖V1 − V2‖ = l .

By (2) and (11), one has

B ≥ max
i=1,...,3

‖Vi − E‖ ≥ max{‖E − V1‖, ‖E − V2‖} ≥ l/2 .

�

We are now ready to prove the main result of the section.

Theorem 3 (Advantage of centralized strategies). Let MD be given by (8) and MC be the optimal
game length in a centralized pursuers’ setting. Then,

MC ≤ MD ≤ 2MC . (17)

Proof: According to (9) and (14), one has MC ≤ MD. By Lemmas 1 and 2, it turns out that

MD ≤ l ≤ 2B ≤ 2MC , (18)

where the last inequality comes from the fact that B is a lower bound on the game length for any pursuers’

strategy, as stated by Theorem 2. �

In the sequel, we show that there indeed exist games in which

MC = MD , (19)

and others in which

MC =
1

2
MD , (20)

thus meaning that both bounds in (17) are tight.

Theorem 4 (Tightness of lower bound). There exist games such that MC = MD.

Proof: To prove the theorem, we show that there exist games for which MD = B. In fact, being B ≤
MC ≤ MD, then MD = B implies MC = MD. Let us choose a game initial condition such that V is

a right triangle and let us adopt the notation shown in Fig. 4 in which MD = ‖S − Q‖ + ‖Q − V1‖.
Since SQ is the hypotenuses of the triangle with vertices S, Q and V3, by Theorem 1, one easily gets

MD ≥ ‖V1 − V3‖ = m. Moreover, by (15), it holds

m ≤ MD ≤ l .

Let the smallest edge s shrink to 0. One has

lim
s→0

l = lim
s→0

√
m2 + s2 = m,

and hence

lim
s→0

MD = m. (21)

Moreover, it is easy to show that as s → 0, P1, E and V1 tend to be collinear. This implies that

lim
s→0

(‖V1 − P1‖ − ‖V1 − E‖) = lim
s→0

‖P1 − E‖ .
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E

V3

V2

V1

P1
S

Q

Figure 4: Proof of Theorem 4. The length of the bold line is equal to MD. As ‖V2 − V3‖ → 0, both MD and B tend to

‖V1 − V3‖ and then MD → B, thus implying MD = MC .

By (11), one has

lim
s→0

B ≥ lim
s→0

(
‖V1 − E‖+ 1

2
(‖V1 − P1‖ − ‖V1 − E‖)

)
= lim

s→0

(
‖V1 − E‖+ 1

2
‖P1 − E‖

)
= m. (22)

Since MD ≥ B, by (21) and (22) one has

lim
s→0

MD = lim
s→0

B = m,

which concludes the proof. �

Theorem 5 (Tightness of upper bound). There exists games such that MD = 2MC.

Proof: We show that there exist games in which MC = B and MD = 2B. Let V(0) be the isosceles triangle
depicted in Fig. 5. Define H,T1, T2 the projections of V3(0), P1(0), P2(0) on V1(0)V2(0), respectively. Let

the evader initially lie on the segment V3(0)H , define ε = ‖V3(0)−H‖ and K = E(0) + 2(V3(0)−E(0)).

Since ‖V3(0)− P1(0)‖ = ‖V3(0)− E‖ = ‖V3(0)−K‖ one has

‖P1(0)− T1‖ ≤ ‖P1(0)− V3(0)‖+ ‖V3(0)−H‖
= ‖V3(0)−K‖+ ‖V3(0)−H‖
≤ 2‖V3(0)−H‖ = 2ε . (23)

Now, let ε tend to 0. In Fig. 5, MD corresponds to the length of the bold line. By following a similar

reasoning as in the proof of Theorem 4, one has

lim
ε→0

MD = lim
ε→0

‖S −Q‖+ ‖Q− V1(0)‖ = ‖V2(0)− V1(0)‖ . (24)

Let us now introduce a two-step centralized pursuers’ strategy, denoted by Ĉ. Let vQE = Q − E(0).

Assume first that the evader starts moving in the half-plane v′QEe(t) ≥ 0, i.e., the evader moves to the

right in Fig. 5 (the case in which the evader starts moving in the opposite direction is similar). The

strategy Ĉ is defined as follows.

a) Initially, P1 moves towards T1, while P2 and P3 move symmetrically to the evader with respect to

V1(0)V3(0) and V1(0)V2(0), respectively, see Fig. 6.

b) As soon as (P1 −E) is parallel to (V1 − V2), pursuers play the decentralized strategy D until capture

occurs.
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E(0)

V3(0)

V2(0) V1(0)H

P1(0) P2(0)

T1 T2

P3(0)

V(0)

S Q

K

Figure 5: Proof of Theorem 5. Illustration of the Voronoi cell V at time 0 and of projections T1, T2 and H. The length of

the bold line corresponds to MD .

E(0)

V3(0)

V2(0) V1(τ) = V1(0)

P1(0) P2(0)

P3(0)

P1(τ)

P2(τ)

P3(τ)

E(τ)

V(0) V(τ )

V2(τ)

V3(τ)

H

Figure 6: Proof of Theorem 5. First step of strategy Ĉ. Players move along the dotted arrows. Pursuer P1 moves downward,

while P2 and P3 move symmetrically to the evader w.r.t. the segments V1(0)V3(0) and V1(0)V2(0), respectively. Voronoi

cells V at time 0 and at time τ are depicted in black and red, respectively. As the triangle get squeezed, due to ‖V3−H‖ → 0,

one has MD → 2MC , i.e., the decentralized D-strategy needs a double time to capture the evader, w.r.t. the Ĉ-strategy.

Notice that in step a), P2 and P3 move in such a way to guarantee that V1, v12 and v13 remain the

same, where v12 and v13 are defined as in (5). Therefore, there exists a finite time τ at which the Ĉ
strategy switches from step a) to step b). Since, by (23), ‖P1(0)−T1‖ ≤ 2ε, one has τ ≤ 2ε. Notice that,

by letting ε tend to 0, the duration of step a) can be made arbitrarily short. Now, let η be the duration of

step b), until capture occurs. Hence, MĈ = τ + η ≤ 2ε+ η. Observe that, due to the switching condition

to step b), at time τ the Voronoi cell becomes a right triangle like the one in the proof of Theorem 4, see

Fig. 6. So, by using the same argument as in the proof of Theorem 4, one has limε→0 η = ‖V1(τ)−V2(τ)‖.
Then, it holds

lim
ε→0

MĈ = lim
ε→0

τ + ‖V1(τ) − V2(τ)‖

≤ lim
ε→0

2ε+ ‖V1(τ)− V2(τ)‖

= lim
ε→0

‖V1(τ) − V2(τ)‖

≤ ‖V1(0)−H‖ ,

where the last inequality comes from the fact that V1(τ) = V1(0). Thus, by (24) and by the fact that the

optimal centralized strategy is such that MC ≤ MĈ, one has

lim
ε→0

MC ≤ lim
ε→0

MĈ ≤ ‖V1(0)−H‖ =
1

2
‖V2(0)− V1(0)‖ =

1

2
lim
ε→0

MD .

Since by (17), MC ≥ MD/2, one gets

lim
ε→0

MC =
1

2
lim
ε→0

MD ,

11



which concludes the proof. �

Remark 3. The two-step pursuers’ strategy Ĉ adopted in the proof of Theorem 5 is centralized because
during step a), P1 moves orthogonally to the largest edge of V(0). Since the vertices of V(0) are defined

by the position of all the pursuers (and the evader), it is apparent that the Ĉ strategy requires that the
pursuers have full knowledge of the game state.

By Theorem 3, it follows that pursuers playing in a centralized way may reduce the game duration

by at most a factor two, with respect to pursuers adopting a decentralized strategy. For a given game,

the improvement of using a centralized strategy instead of a decentralized one can be summarized by the

index

δ =
MC

MD
. (25)

By Theorem 3, it follows that
1

2
≤ δ ≤ 1 . (26)

Moreover, as stated in Theorems 4 and 5, these bounds are tight in the sense that there exist games

in which they can be achieved.

For specific game initial conditions, the index δ in (25) is difficult to evaluate, because the optimal

centralized pursuers’ strategy is unknown and therefore the actual value of MC cannot be computed.

Hence, it is useful to introduce the lower bound

δ =
B

MD
. (27)

Since MC ≥ B, one has δ ≥ δ. Moreover, by (18), one has MD ≤ 2B and hence δ ≥ 1/2. So, the

bounds in (26) can be refined as
1

2
≤ δ ≤ δ ≤ 1 . (28)

Notice that, for a specific game, the lower bound δ can be easily computed, since both MD and B

can be readily evaluated by (8) and (10), respectively.

6. Numerical evaluation of lower bounds

In this section, the lower bound δ is computed for a number of different game initial conditions.

Clearly, the larger is δ, the smaller improvement can be obtained by playing in a centralized manner.

In Fig. 7, some examples of initial Voronoi cells V(0) are reported. For each initial position of the

evader E(0) inside V(0), the corresponding color denotes the value of δ. The positions of the pursuers

are not reported since they depend on E(0) and can be derived from V(0) and E(0).

Several remarks can be made on the results depicted in Fig. 7. First, one may notice that if E(0) is close

to a vertex of V(0) then δ approaches 1, and hence no improvement can be obtained by playing centralized

pursuers’ strategies. This fact is not surprising since these cases correspond to initial conditions in which

two pursuers are close to the evader and to the corresponding vertex; in this situation, the longest path

the evader may travel is towards the farthest vertex of V(0), where it will be captured, even by pursuers

playing the D-strategy.

If V(0) is an equilateral triangle (Fig. 7-a), the minimum value of δ is
√
3/2, which is attained when

E(0) lies in the geometrical center of V(0). If V(0) is an isosceles triangle with all acute angles, the

12



performance improvement in playing centralized strategies is remarkably small: for the games reported

in Fig. 7-b, one has δ ≥ 0.968 for any possible initial condition of the evader. This means that the

maximum advantage of the pursuers playing in a centralized way with respect to the D-strategy is about

3%. A different situation arises when dealing with obtuse isosceles triangles. In this case, for a wide

obtuse angle and a suitable choice of E(0), δ may approach 0.5. Notice that this is consistent with the

argument in the proof of Theorem 5. For the games illustrated in Fig. 7-c, where the obtuse angle is

equal to 165◦, one has 0.526 ≤ δ ≤ 1. Fig. 7-d reports the case of a right triangle, where δ ranges from

0.901 to 1. Finally, generic obtuse and acute scalene triangles are given in Fig. 7-e and 7-f, for which

δ ≥ 0.63 and δ ≥ 0.913, respectively.

7. Conclusions

The benefits of adopting centralized pursuit strategies with respect to decentralized ones, in the three-

pursuer single-evader game, have been quantified. The main result shows that the knowledge of the full

game state allows a pursuer team to reduce the capture time by a factor two. Although the considered

setting is admittedly simple and quite specific, the result is a first contribution towards the quantitative

evaluation of the advantages provided by centralized algorithms in pursuit-evasion games. Clearly, the

problem deserves deeper investigation in many directions. The extension to the case of n pursuers,

although non trivial, may reveal a different gap between the performance of centralized and decentralized

strategies. Further studies should consider more complex game settings, such as 3D environments, non-

holonomic motion models, different agent speeds, or the presence of obstacles. For all these scenarios,

it is believed that there is room for assessing the actual improvement provided by centralized strategies

over decentralized ones.
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Appendix A. Proof of Theorem 1

In the first step of the E-strategy, the evader goes from E(0) to Q. So, step 1 takes a time τ1 =

‖E(0) − Q‖. In step 1, according to (4a), P1 and P3 move in the same direction of the evader along

e(0) = vQE , while P2 obeys to (4b) going towards Q. As a result, only the smallest edge of V moves

(along e(0)), while the others remain the same. The Voronoi cell at time τ1 is depicted in red in Fig. 2.

Since V1(τ1) = V1(0) ∈ V(τ1), in the second step of the E-strategy the evader moving along vV1Q may

safely approach V1(0) at time τ12 = τ1 + τ2, with τ2 = ‖Q− V1(0)‖. So, V1(τ12) = V1(0). Notice that, as

in the previous step, only the smallest edge of V is moving in the second step. In Fig. 2, V(τ2) is colored
in blue.

During the final step, the evader points towards the farthest vertex of V(τ2) moving along vSE . Since

the Voronoi cell at any time is a triangle similar to V(0), the farthest vertex from V1(τ2) = V1(0) turns

out to be V2(τ2). By defining τ3 = ‖V1(0)− V2(τ2)‖, it is easy to see that τ3 = ‖S − E(0)‖ and then the

total traveled time is τ1 + τ2 + τ3, which coincides with (8). At such a time, the Voronoi cell collapses to

one point and capture occurs.

It remains to prove that the E-strategy is optimal when the pursuers play the D-strategy, i.e., there

exists no other evader’s strategy guaranteeing a longer survival.

At a given time τ , according to (8), let MD(τ) denote the residual game length if the pursuers and

the evader play the D-strategy and the E-strategy, respectively, from time τ onwards. Let the evader
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move along a direction ê : ‖ê‖ = 1 for a time ∆τ > 0, i.e., Ė(t) = ê, τ ≤ t ≤ τ +∆τ . Let MD(τ + ∆τ)

be the corresponding residual game length at time τ +∆τ . Let us define

∆M(∆τ) = MD(τ +∆τ) −MD(τ) . (A.1)

As it has been shown above, if ê ∈ {vQE , vV1Q, vSE}, one has ∆M(∆τ) = −∆τ . Hence, along the

three directions the evader follows in the E-strategy, it holds

dMD(t)

dt
= lim

∆τ→0

∆M(∆τ)

∆τ
= −1 .

In the following, we prove that for any direction ê /∈ {vQE , vV1Q, vSE} one has dMD(t)
dt

< −1. So,

the evader will be captured in a shorter time and hence any evader’s strategy involving a move ê /∈
{vQE , vV1Q, vSE} cannot be optimal.

Let ê = [cos(θ), sin(θ)]′ with θ ∈ [0, 2π]. Assume the evader moves along direction ê for a time ∆τ .

We want to compute dMD(t)
dt

as a function of θ. Let vij be defined as in (5). Let us consider the six

directions ±v12, ±v13, ±v23, and the resulting six angular intervals in which they partition the interval

[0, 2π], as shown in Fig. A.8. Let l = ‖V1 − V2‖, m = ‖V1 − V3‖ and denote by ϕ1 and ϕ2 the angles

associated to vertices V1 and V2, respectively.

E

V2

V3

V1

6©

1©
2©

3©

4©
5©

S Q

ϕ2 ϕ1

Figure A.8: Proof. of Theorem 1. The six directions given by ±v12, ±vV13
, ±v23 are depicted along with the related

angular intervals. If the evader does not move along one of these directions, its move is surely not optimal.

Let us start by assuming θ ∈ [0, ϕ2) and derive the expression of ∆M(∆τ). Let us refer to Fig. A.9,

where V(τ) and V(τ +∆τ) are depicted in black and red, respectively. By (8), MD(τ) = ‖S(τ)−Q(τ)‖+
‖Q(τ)−V1(τ)‖. It is easy to see that ‖Q(τ +∆τ)−V1(τ +∆τ)‖ = ‖Q(τ)−V1(τ)‖. Let Q̂ = Q(τ)+∆τ ê

and define b = ‖Q(τ +∆τ) − Q̂‖, see Fig. A.9. One has

‖S(τ +∆τ)−Q(τ +∆τ)‖ = ‖S(τ)−Q(τ)‖ − b ,

and hence

∆MD(∆τ)=‖S(τ +∆τ) −Q(τ +∆τ)‖ − ‖S(τ)−Q(τ)‖=−b .

By the law of sines, one has
b

sin(π − θ − ϕ1)
=

∆τ

sin(ϕ1)
,

that is

b = ∆τ
sin(π − θ − ϕ1)

sin(ϕ1)
= ∆τ

sin(θ + ϕ1)

sin(ϕ1)
.
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ê

Figure A.9: Proof. of Theorem 1. The evader moves along a direction belonging to the angular interval 1© of Fig. A.8. V(τ)

and V(τ+∆τ) are depicted in black and red, respectively. The length of the blue segment b is equal to MD(τ)−MD(τ+∆τ).

Since b is greater than the path ê traveled by the evader, the depicted move cannot be optimal.

Thus, one has

∆MD(∆τ) = −∆τ
sin(θ + ϕ1)

sin(ϕ1)
,

and hence
dMD(t)

dt
= lim

∆τ→0

∆M(∆τ)

∆τ
= − sin(θ + ϕ1)

sin(ϕ1)
.

By using a similar reasoning, one can compute dMD(t)/dt for all the other cases. Table A.1 reports the

expressions of dMD(t)/dt for θ belonging to the six angular intervals.

By straightforward calculus arguments, it is possible to show that such a function has three maxima

in [0, 2π), all equal to −1. As expected, they are achieved when θ is equal to 0, π and 2π − ϕ1, which

correspond to the directions vQE , vSE , vV1Q adopted in the E-strategy. Therefore, any other direction

leads to a greater reduction of MD and thus it cannot be optimal. �

Table A.1: Expressions of dMD(t)/dt as a function of θ

Case θ interval dMD(t)
dt

1 [0, ϕ2) − sin(θ+ϕ1)
sin(ϕ1)

2 [ϕ2, π − ϕ1) − sin(θ+ϕ1)
sin(ϕ1)

− sin(θ−ϕ2)
sin(ϕ2)

3 [π − ϕ1, π) − sin(θ−ϕ2)
sin(ϕ2)

4 [π, π + ϕ2) − sin(θ−ϕ2)
sin(ϕ2)

+ sin(θ)
sin(ϕ1)

5 [π + ϕ2, 2π − ϕ1)
sin(θ)
sin(ϕ1)

6 [2π − ϕ1, 2π)
sin(θ)
sin(ϕ1)

− sin(θ+ϕ1)
sin(ϕ1)
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