
1
Presentazione

2

Gliargomentitrattati
�

Ricordiamo alcune nozioni di base
�

Introduzione alla calcolabità
�macchine di Turing
�decidibilità�linguaggi�esempi di problemi decidibili

�
Argomenti avanzati
�problemi indecidibili
�riduzione�teorema di Rice
�minimundescriptionlength
�indecidibilitàdella logica del primo ordine

3

Gliargomentitrattati
�

Introduzione alla complessità
�definizione di P, NP, coP, coNP
�esempi di problemi in queste classi
�riduzione e NP-completezza

�
Argomenti avanzati
�teorema di Cook-Levin
�relazioni fra P, NP, NP-completie i loro complementi
�isomorfismo, linguaggi sparsi
�complessitàspaziale
�algoritmi probabilistici
�quantum computing

4

Obbiettivo
L’obbiettivo del corso è
�rivedere in maniera formale i concetti su calcolabilitàe

complessitàgiàvisti durante il corso di laurea
�introdurre alcuni argomenti avanzati
Si tratta di argomenti matematici (definizioni e teoremi)…
per renderli meno noiosi e per ricordarli meglio
�cercheremo di dimostrare insieme alcuni risultati
�vedremo numerosi esempi

5

Esame
L’esame consiste in
�scegliere un argomento o un problema connesso con gli

argomenti del corso
�approfondirlo cercando e studiando la letteratura come se si

dovesse scrivere una review
�scrivere una piccolo documento (5-10 pagine) che riassume

quanto appresso
�lo stile dovrebbe essere quello di una reviewche non si limiti

ad elencare solo i riferimenti ma cerchi di riassumerli e
spiegarli (ad esempio, come se stesse preparando delle
dispense per gli studenti del dottorato ….)

6

Esame
Esempi di argomenti per l’esame
�

minimum descriptionlengthe machinelearning
�

quantum computing
�

algoritmi di fattorizzazioneintera
�

algoritmi per il graphmatching
�

…

7

Libri
Libroprincipale
�

M. Sipser, “Introduction to theory of computation”,
2°edition, Thompson

Altririferimenti
�

C.
Papadimitriou,

“Computational
complexity”,

Addison Wesley
�

C. Toffalori, F. Corradini, S. Leonesi, S. Mancini,
“Teoria

della
computabilità

e
complessità”,

McGraw-Hill

8
Introductory notions

9

Calculability
Computational calculabitytheory

�
the investigation of the problems that can be solved
using reasonable computers

�
the reasonable computers are those …

that can be
constructed (now or in the future)

10

Complexity
Computational complexity theory

�
the investigation of the time, memory, or other
resources

required
for

solving
computational

problems

�
the resources are usually measured as a function of
ofthe input dimension

11

Big O-Notation
It will be extremely convenient to use the following
‘order-notation’to express our complexities.
Definition: Let f and g be two functions N

→R +.
We say and write f(n) = O(g(n)) if and only if there
are two positive constant c and n0 such that
f(n) ≤c�g(n) for all n≥n0 .
“g(n) is an (asymptotic) upper bound on f(n)”.12

Little o-Notation
D

efinition: Let f and g be tw
o functions N

→
R

+.
W

e say and w
rite f(n) =

 o(g(n)) if and only

0
)n(

g
)n(

f
limn

=
∞

→

•
big-O

 is about “less-or-equal-than”,
•

little o is about “strictly less than”.

13

Languages
�

G
iven an alphabet Σ

, w
e can m

ake a w
ord or string

by concatenating the letters of Σ
.

�
A

 language L is a set of w
ords, i.e.

�
L⊆

Σ
*, w

here * is the kleene
operator

�
E

xam
ples

�
Σ

=
{0,1,.}, the set of decim

al binary num
bers

�
Σ

=
{a,b,c,d,e,f,…

}, the set of italian
w

ords

14

Accepted Languages
�

Let L be a language ⊆S

�
a machine M acceptL if

M
x∈∈∈ ∈

S

“accept”

“reject”
if and only if x∉

L

if and only if x∈
L

15

Regular languages
�

G
iven an alphabet Σ

, any expression that can be obtained
by

1.
R

 =
 a, w

ith a∈
Σ

(a sym
bol of the alphabet)

2.
R

 =
 ε

(the null string)
3.

R
 =

 ∅
(the void expression)

4.
R

 =
 (R

1
| R

2), the alternation
5.

R
 =

 (R
1

R
2), the concatenation

6.
R

 =
 (R

1 *), the kleene
closure

�
A

 language is regular if it can be defined by a regular
expression

16

Regular languages: examples
�Binary positive numbers

(1 | 0) *�A decimal number with one integer digit and two decimal digits
(+|-|ε)(0|1|2|…|9)* . (0|1|2|…|9) (0|1|2|…|9)

�identifiers of a programming language
(a|b|c| …|z|) (a|b|c| …|z|0|1| …|9|)*

17

Finite Automaton and
regular languages

A
lternative definition
A

 language is regular if and only if it can be accepted by a
finite autom

aton

A
 finite (state) autom

ata
�

a sim
ple m

achine that reads a single
input character at every tim

e step
�

has an internal state that can assum
e

a finite num
ber of different values

�
internal state are of tw

o different types
(accept, reject) that define w

hether
the read string is accepted or not

11E13
2.1 FA(internal state)18

Finite Automaton and
regular languages

F
orm

ally
A

 nondeterm
inistic finite autom

aton (F
A

) M
 is defined by a 5-

tuple M
=

(Q
,Σ

,δ,q
0 ,F

), w
ith

Q
: finite set of states

Σ
: finite alphabet

δ: transition function δ:Q
×Σ

ε →
P

 (Q
)

q
0 ∈

Q
: start state

F⊆
Q

: set of accepting states

T
he autom

ata is called determ
inistic or non determ

inistic
according w

hether δ(q,a) is a singleton or not for each q,a

19

Finite automaton

q
1

q
2

q
3

1
00,1

0
1

states
transition rules

starting state

accepting state

The deterministic automaton that recognizes the language:
0*1((1|0) (0|1))*

20

Some properties of FA and regular
languages

�Deterministic FA (DFA) and non deterministic FA (NFA) are
equivalent:�they accept all and only all the regular languages
�there exist algorithms to transform a DFA into an equivalent

FA, and vice versa …
�FA and regular expression are equivalent

�there exist algorithms to transform a FA to the equivalent
regular expression and, vice versa,…

�Regular languages are closed under union, intersection,
complementation, concatenation
�there exist algorithms to transform a FA to another FA that

accepts the complement language

21

Context free languages
DefinitionA context free grammar G=(V,Σ,R,S) is defined by

�V: a finite set variables
�

Σ: finite set terminals (with V∩
Σ=

∅)
�R: finite set of substitution rules V →(V∪

Σ)*
�S: start symbol ∈V
�DefinitionThe language of grammar G, denoted by L(G), is the

set of strings of terminal symbols that can be obtained by
applying the substitution rules from the start symbol

�L(G) = { w
∈

Σ* | S ⇒* w }

22

Example: the booleanalgebra
G

=
(V

,Σ
,R

,S
) w

ith
�

V
 =

 {S
,Z

}
�

Σ
=

 {0,1,(,),¬
,∨

,∧
}

�
R

: �S
 →

0
�S →

¬
(S

)
�S →

(S
)∨

(S
)

�S →
(S

)∧
(S

)

�S
om

e elem
ents of L(G

):
0¬

((¬
(0))∨

(1))
(1)∨

((0)∧
(0))

23

Parse Trees

T
he parse tree for (0)∨

((0)∧
(1))

�S
 →

0 | 1 | ¬
(S

) | (S
)∨

(S
) | (S

)∧
(S

)

S

(
)

∨
)

(
S

S

(
)

∨
)

(
S

S
0

0
124

Example:
a simple programming language

G
=

(V
,Σ

,R
,S

) w
ith

�
V

 =
 {S

,C
,E

,B
}

�
Σ

=
 {id,val,=

,(,),if,then,=
=

}
�

R
:

S
 →

C
;S

 | ε
C

 →
id=

E
C

 →
if (B

) then S
 end

E
 →

id|val
B

 →
E

=
=

E

A
 program

 in L(G
):

id=
val;

id=
id;

if (id=
=

val) then
id=

val
end

25

Pushdown automata
A pushdown automata
�is a machine composed by

�a finite state control unit
�a stack that contain symbols

�it can read one input character at
each step�it can add, read and remove
symbols from the stack
Pushdown automata can recognize
(decide) context free languages

))0((
)0(

C Y X A
PDA(internal state) stack26

More about context free languages
�

A context free language
�can be decided by a parsers (automata that use a stack)
�can be decided in O(n 3) (O(n 2) if the language is not

ambiguous)
�

Context free languages strictly contains regular
languages
�for example, the language {a nb n|n>0} is context free

languages, but not a regular language

27

More languages
Context-sensitive grammars
�the rules are in the form

�αAβ→αγβ�where A is a non terminal and α,β,γare strings of terminals
and non terminals, γcannot be null

�the rule S →
εis allowed if Sdoes not appear on the right side of

any rule�no algorithm is known to decide Context-sensitive languages in
polynomial time

Unrestricted grammars
�the rules are any form
�no algorithm is known to decide languages generated by

unrestricted grammars

28

Chomsky language gerarchy
�

All inclusions are strict!!regular contextfree contextsensitive generatedby
no restrictiongrammar

Allthe languages

29
Turing
Turingmachines

machines

30

Turing Machines
A

lan M
. T

uring (1912–1954)

In
1936,

T
uring

introduced
his

abstract
m

odel
for

com
putation in his article “O

n C
om

putable N
um

bers, w
ith

an application to the E
ntscheidungsproblem

”.

A
t the sam

e tim
e, A

lonzo C
hurch published sim

ilar ideas
and results.

T
he

T
uring

m
odel

has
becom

e
the

standard
m

odel
in

theoretical com
puter science.

31

Informal Description TM

D
epending on its state and the letter x

i , the T
M

-

w
rites dow

n a letter,
-

m
oves its read/w

rite head left or right, and
-

jum
ps to a new

 state.

internal
state set Q

R
L

L
_

_
1

#
0

_
1

1
0

1
A

t every step,
the head of the
T

M
 M

 reads a
letter x

i from
 the

one-w
ay infinite

tape.

32

Input Convention

state q
0

L
L

_
_

_
w

w
w

n2
1

Initially, the tape contains the input
w

∈
Σ

*, padded w
ith blanks “_”,

and the T
M

 is in start state q
0 .

D
uring the com

putation, the head m
oves left

and right (but not beyond the leftm
ost point),

the internal state of the m
achine changes,

and the content of the tape is rew
ritten.

33

Output Convention
T

he com
putation can proceed indefinitely, or the

m
achines reaches one of the tw

o halting states:

state q
accept

L
L

_
v

v
v

m2
1

state q
reject

L
L

_
v

v
v

m2
1or

34

Turing Machine (Def. 3.3)
A

 T
uring m

achine M
 is defined by a

7-tuple (Q
,Σ

,Γ
,δ,q

0 ,q
accept ,q

reject), w
ith

•
Q

 finite set of states
•Σ

finite input alphabet (w
ithout “_”)

•Γ
finite tape alphabet w

ith { _ } ∪
Σ

⊆
Γ

•
q

0 start state ∈
Q

•
q

accept accept state ∈
Q

•
q

reject reject state ∈
Q

•δ
the transition function

δ: Q
\{q

accept ,q
reject } ×

Γ
→

Q
 ×

Γ
×

{L,R
}

35

Configuration of a TM
T

he configuration of a T
uring m

achine consists of
•

the current state q∈
Q

•
the current tape contents ∈

Γ
*

•
the current head location ∈

{0,1,2,…
}

T
his can be expressed as an elem

ent of Γ
*×Q

×Γ
*:

L
_

_
1

#
0

_
1

1
0

1

q
9

becom
es “101 q

9 1_0#1”

36

An Elementary TM Step
Let u,v∈

Γ
* ; a,b,c∈

Γ
; q

i ,q
j ∈

Q
, and M

 a T
M

 w
ith

transition function δ.

W
e say that the configuration “ua

q
i bv”

yields
the

configuration “uac
q

j b”
if and only if:

δ(q
i ,b) =

 (q
j ,c,R

).

S
im

ilarly, “ua
q

i bv”
yields “u q

j acb”
if and only if

δ(q
i ,b) =

 (q
j ,c,L).

37

State diagrams of TMs
Like w

ith P
D

A
, w

e can represent T
uring m

achines
by (elaborate) diagram

s.

If transition rule says: δ(q
i ,b) =

 (q
j ,c,R

),
then:

q
i

q
j

b →
c,R

38

Terminology
starting configuration

on input w
: “q

0 w
”

accepting configuration: “uq
accept v”

rejecting configuration: “uq
reject v”

T
he accepting and rejecting configurations are

the halting configurations.

39

Example: A = { 0 j| j=2 n}

A
pproach: If j=

0 then “reject”; If j=
1 then “accept”;

if j is even then divide by tw
o; if j is odd and >

1
then “reject”. R

epeat if necessary.

1.
C

heck if j=
0 or j=

1, accept/reject accordingly
2.

C
heck, by going left to right if the string has

even or odd num
ber of zeros

3.
If odd then “reject”

4.
If even then go back left, erasing half the zeros

5.
goto

1

G
oal: T

o build a T
M

 that accepts all and only the strings in
A

 = { 0
j| j=

2
n

}

40

41

Accepting TMs
A

 T
uring m

achine M
 accepts

input w
∈

Σ
*

if and only if there is a finite sequence of
configurations C

1 ,C
2 ,…

,C
k

w
ith

•
C

1 the starting configuration “q
0 w

”
•

for all i=
1,…

,k–1 C
i yields C

i+
1

(follow
ing M

’s δ)
•

C
k

is an accepting configuration “uq
accept v”

T
he language that consists of all inputs that are

accepted by M
 is denoted by L(M

).

42

Turing recognizable
A

 language L is T
uring-recognizable

if and only
if there is a T

M
 M

 such that L=
L(M

).

N
ote: O

n an input w
∉

L, the m
achine M

 can
halt in a rejecting state, or it can ‘loop’indefinitely.

H
o

w
 d

o
 yo

u
 disting

uish
 b

etw
een

 a very long
co

m
p

utation
 an

d
 o

ne that w
ill n

ever h
alt?

A
lso called: a recursively enum

erable
language.

43

Enumerating Languages
W

hen a T
M

 E
 generates the w

ords of a language,
E

 is an enum
erator (cf. “recursively enum

erable”).

A
 T

uring m
achine E

 enum
erates

the language L
if it prints an (infinite) list of strings on the tape
such that all elem

ents of L w
ill appear on the tape,

and all strings on the tape are elem
ents of L.

(E
 starts on an em

pty input tape. T
he strings

can appear in any order; repetition is allow
ed.)

44

Enumerating = Recognizing
T

heorem
: A

 language L is T
M

-recognizable
if and only if L is enum

erable.

P
roof: (“if”) T

ake the enum
erator E

 and input w
.

R
un E

 and check the strings it generates.
If w

 is produced, then “accept”
and stop,

otherw
ise let E

 continue.
(“only if”) T

ake the recognizer M
.

Let s
1 ,s

2 ,…
be a listing of all strings ∈

Σ
*⊇

L.
F

or j=
1,2,…

run M
 on s

1 ,…
,s

j for j tim
e-steps.

If M
 accepts an s, print s. K

eep increasing j.

45

Turing Decidable (Def. 3.5)

A
lso called: a recursive

language.

A
 language L=

L(M
) is decided

by the T
M

 M
 if on

every w
, the T

M
 finishes in a halting configuration.

(T
hat is: q

accept for w
∈

L and q
reject for all w

∉
L.)

A
 language L is T

uring-decidable
if and only

if there is a T
M

 M
 that decides L.

46

MultitapeTuring Machines
A

 k-tape T
uring m

achine M
 has k different

tapes and read/w
rite heads. It is thus defined

by the 7-tuple (Q
,Σ

,Γ
,δ,q

0 ,q
accept ,q

reject), w
ith

•
Q

 finite set of states

•Σ
finite input alphabet (w

ithout “_”)
•Γ

finite tape alphabet w
ith { _ } ∪

Σ
⊆

Γ
•

q
0 start state ∈

Q

•
q

accept accept state ∈
Q

•
q

reject reject state ∈
Q

•δ
the transition function

δ: Q
\{q

accept ,q
reject } ×

Γ
k→

Q
 ×

Γ
k×

{L,R
} k

47

k-tape TMs versus 1-tape TMs
T

heorem
: F

or every m
ulti-tape T

M
 M

, there
is a single-tape T

M
 M

’such that L(M
)=

L(M
’).

O
r, for every m

ulti-tape T
M

 M
, there is an

equivalentsingle-tape T
M

 M
’.

P
ro

vin
g

 a
n

d
 u

n
d

e
rsta

n
d

in
g

 th
e
se

 kin
d

s o
f ro

b
u

stne
ss

re
su

lts, is e
sse

n
tia

l fo
r ap

p
re

cia
tin

g
 th

e
 p

o
w

e
r o

f th
e

T
u

rin
g

 m
a

ch
in

e
 m

o
d

e
l.

F
rom

 this theorem
 follow

s:
A

 language L is T
M

-recognizable if and only if
som

e m
ulti-tape T

M
 recognizes L.

48

Proof sketch
Let M

=
(Q

,Σ
,Γ

,δ,q
0 ,q

accept ,q
reject) be a k-tape T

M
.

C
onstruct 1-tape M

’w
ith expanded Γ

’=
 Γ∪

Γ∪
{#}

R
epresent M

-configuration
u

1 q
j a

1 v
1 , u

2 q
j a

2 v
2 , …

,
u

k q
j a

k v
k

by M
’configuration

,
q

j # u
1 a

1 v
1 # u

2 a
2 v

2 # …
u

k a
k v

k

(T
he tapes are seperated

by #, the head
positions are m

arked by underlined letters.)

49

Proof sketch
O

n input w
=

w
1 …

w
n , the T

M
 M

’does the follow
ing:

•
P

repare initial string: #w
1 …

w
n #_#

L
#_#_

L

•
R

ead the underlined input letters ∈
Γ

k

•
S

im
ulate M

 by updating the input and the
underlining of the head-positions.

•
R

epeat 2-3 until M
 has reached a halting state

•
H

alt accordingly.

P
S

: If the update requires overw
riting a # sym

bol,
then shift the part #

L
_ one position to the right.50

Nondeterministic TMs
A

 nondeterm
inistic T

uring m
achine

M
 can have

several options at every step. It is defined by

the 7-tuple (Q
,Σ

,Γ
,δ,q

0 ,q
accept ,q

reject), w
ith

•
Q

 finite set of states

•Σ
finite input alphabet (w

ithout “_”)

•Γ
finite tape alphabet w

ith { _ } ∪
Σ

⊆
Γ

•
q

0 start state ∈
Q

•
q

accept accept state ∈
Q

•
q

reject reject state ∈
Q

•δ
the transition function

δ: Q
\{q

accept ,q
reject } ×

Γ
→

P
 (Q

 ×
Γ

×
{L,R

})

51

Computing with Nondeterministic TMs
C

1

C
6

C
5

C
4

C
3

C
2

E
volution of the n.d. T

M
represented by a tree
of configurations (rather
than a single path).

M
“reject”

“accept”

If there is (at least)
one accepting leave,
then the T

M
 accepts.

t=
1t=

2

t=
3

52

Simulating Nondeterministic TMs
with Deterministic Ones
W

e w
ant to search every path dow

n the tree
for accepting configurations.

B
ad idea: “depth first”. T

his approach can get
lost in never-halting paths.

G
ood idea: “breadth first”. F

or tim
e step 1,2,…

w
e list all possible configurations of the non-

determ
inistic T

M
. T

he sim
ulating T

M
 accepts

w
hen it lists an accepting configuration.

53

Breadth First
Let b be the m

axim
um

 num
ber

of children of a node.

C
1

C
6

C
5

C
4

C
3

C
2

M
“reject”

“accept”

t=
1t=

2t=
3

A
ny node in the tree can

be uniquely identified by
a string ∈

{1,…
,b}*.

E
xam

ple: location of the
rejecting configuration is (3,1).

W
ith the lexicographical listing ε, (1), (2),…

, (b), (1,1),
(1,2),…

,(1,b), (2,1),…
et cetera, w

e cover all nodes. 54

Proof of Theorem (simulating NTM)
Let M

 be the nondeterm
inistic T

M
 on input w

.

T
he sim

ulating T
M

 uses three tapes:
T

1 contains the input w
T

2 the tape content of M
 on w

 at a node
T

3 describes a node in the tree of M
 on w

.

1)
T

1 contains w
, T

2 and T
3 are em

pty
2)

S
im

ulate M
 on w

 via the determ
inistic path

to the node of tape 3. If the node accepts,
“accept”, otherw

ise go to 3)
3)

Increase the node value on T
3; go to 2)

55

Robustness
Just like k-tape T

M
s, nondeterm

inistic T
uring

m
achines are not m

ore pow
erful than sim

ple T
M

s:

E
very nondeterm

inistic T
M

 has an equivalent
3-tape T

uring m
achine, w

hich –in turn–
has an

equivalent 1-tape T
uring m

achine.

H
ence: “A

 language L is recognizable if and only
if som

e nondeterm
inistic T

M
 recognizes it.”

T
h

e T
u

ring
 m

ach
in

e m
o

d
el is extrem

ely ro
b

ust.56

Other Computational Models
W

e can consider m
any other ‘reasonable’

m
odels of com

putation: neural netw
orks,

quantum
 com

puting…

E
xperience teaches us that every such m

odel
can be sim

ulated by a T
uring m

achine.

C
hurch-T

uring T
hesis:

T
he intuitive notion of com

puting and algorithm
s

is captured by the T
uring m

achine m
odel.

57

Random
Access Machines

RAM Machines�A set of R1 , R2 , R3 , …of registersisavailable
�Everyregisterisa memorythatcan containa positive integer

�Program containsa sequenceof instructionsin
�Increment: Ri ++

The registrerisincreasedby1
�Decrement: Ri --

The registeri decreasedb1. Ifthe
registerisalready0, the instructionhas
no effect�conditionaljump: IF Ri GOTO L1
Ifthe registerisnotnull, wejumpat L1

IF R1 GOTO ciclo
ciclo:R2 ++R1 --IF R1 GOTO ciclo
fine: The sumof the tworegisters
R1 e R2

58

Non-deterministicRAM
�In non-deterministicRAM, threeother

instructionsare available
�randomchoice: FORK

takesin input twoinstructionsand
executeone of them

�ACCEPTthe machineaccepts
�REJECTthe machinerejects

�Aninput isaccept, ifthereisa paththat
allowsthe program toaccept.

aIF R1 GOTO bR1 --FORK{GOTO a,R2 ++ }
GOTO aDIVIF R3 GOTO reACCEPT

reREJECT Isnumberin R1 prime ?
Weusea procedure DIV thatcheck
whetherR2 isa factorof R

1 ?

59

µ-recursive functions
µ-recursive functions are defined as
�basic functions�constants, f(x1 ,..,xk)=n

�increment, S(x)=x+1
�projection, U s(x1 ,..,xk)=xs

�composed functions:
if h, gi , are µ-recursive functions then f is µ-recursive
�composition, f(x1 ,..,xk)=h(g1 (x1 ,..,xk),…, gr (x1 ,..,xk))
�recursion, f(0,x1 ,..,xk)= g(x1 ,..,xk)

f(y+1,x1 ,..,xk)=h(y,f(y,x1 ,..,xk), x1 ,..,xk)

60

µ-recursive functions: multiplication

piu(0,b)=b piu(a+1,b)=piu(a,b)+1
per(0,b)=0per(a+1,b)=piu(per(a,b),b)

base recursion: g is the projection operator

�constants, f(x1 ,..,xk)=n
�increment, S(x)=x+1
�projection, U s(x1 ,..,xk)=xs
�composition, f(x1 ,..,xk)=h(g1 (x1 ,..,xk),…, gr (x1 ,..,xk))
�recursion, f(0,x1 ,..,xk)= g(x1 ,..,xk)

f(y+1,x1 ,..,xk)=h(y,f(y,x1 ,..,xk), x1 ,..,xk)
recursion: h is the successor

base recursion: g is a constant

recursion: h is the com
position

of piu
and the projection

61

Universal programming languages
A universal programming language (for a RAM machine) must include at least
�increment and decrement operators
�instruction concatenation and

�GOTO and IF or
�recursion or
�WHILE or�undefined FOR

Remark�A FOR is defined if the values assigned to the FOR variable are defined
before starting the execution of the FOR
�f.i. for(i=0;i<10;i++)

�a defined FOR is not sufficient to obtain an universal machine. Why?62
Decidibility
Decidibility

63

Hilbert’s 10th Problem
In 1900, D

avid H
ilbert (1862–1943) proposed

his M
athem

atical P
roblem

s (23 of them
).

T
he H

ilbert’s 10th problem
 is: D

eterm
ination of the

solvability of a D
iophantine equation.

G
iven a D

iophantine equation w
ith any num

ber of
unknow

n quantities and w
ith rational integral num

erical
coefficients: T

o devise a process according to w
hich it

can be determ
ined by a finite num

ber of operations
w

hether the equation is solvable in rational integers.64

Diophantine Equations
Let P

(x
1 ,…

,x
k) be a polynom

ial in k variables
w

ith integral coefficients. D
oes P

 have an
integral root (x

1 ,…
,x

k)∈
Z

k
?

E
xam

ple: P
(x,y,z) =

 6x
3yz +

 3xy
2–x

3–10
has integral root (x,y,z) =

 (5,3,0).

O
ther exam

ple: P
(x,y) =

 21x
2–81xy+

1
does not have an integral root.

65

(Un)solving Hilbert’s 10th
H

ilbert’s “…
a process according to w

hich it can
be determ

ined by a finite num
ber of operations…

”
needed to be defined in a proper w

ay.

T
his w

as done in 1936 by C
hurch and T

uring.

M
atijasevič

proved that H
ilbert’s 10th problem

is unsolvable in 1970.

66

Decidability
T

hus, w
e are now

 ready to tackle the question:

W
hich languages are T

M
-decidable, T

uring-
recognizable, or neither?

W
hat can com

puters do and w
hat not?

W
e do this by considering the question:

A
ssum

ing the C
hurch-T

uring thesis, these are
fundam

ental properties of the languages.

67

Describing TM Programs
T

hree Levels of D
escribing algorithm

s:
•

form
al (state diagram

s, C
F

G
s, et cetera)

•
im

plem
entation (pseudo-P

ascal)
•

high-level (coherent and clear E
nglish)

D
escribing input/output form

at:
T

M
s allow

 only strings ∈
Σ

* as input/output.
If our X

 and Y
 are of another form

 (graph, T
uring

m
achine, polynom

ial), then w
e use <X

,Y
>

to
denote ‘som

e kind of encoding ∈
Σ

*’.

68

Deciding Regular Languages
T

he acceptance problem
for determ

inistic
finite autom

ata is defined by:
A

D
F

A
=

 { <B
,w

>
| B

 is a D
F

A
 that accepts w

 }

N
ote that this language deals w

ith all possible
D

F
A

s
and inputs w

, not a specific instance.

O
f course, A

D
F

A
is a T

M
-decidable language.

69

ADFA is Decidable
P

roof: Let the input <B
,w

>
be a D

F
A

 w
ith

B
=

(Q
, Σ

, δ, q
start , F

) and w
∈

Σ
*.

T
he T

M
 perform

s the follow
ing steps:

1)
C

heck if B
 and w

 are ‘correct’, if not: “reject”
2)

S
im

ulate B
 on w

 w
ith the help of tw

o pointers:

P
q ∈

Q
 for the internal state of the D

F
A

, and
P

w
 ∈

{0,1,…
,|w

|} for the position on the string.
W

hile w
e increase P

w
from

 0 to |w
|, w

e
change P

q
according to the input letter w

P
w

and the transition function value δ(P
q ,w

P
w).

3)
If M

 accepts w
: “accept”; otherw

ise “reject”

70

Regular Expressions
T

he acceptance problem
A

R
E

X
=

 { <R
,w

>
| R

 is a regular expression
that can generate w

 }
is a T

uring-decidable language.

P
roof T

heorem
.

O
n input <R

,w
>:

1.
C

heck if R
 is a proper regular expression

and w
 a proper string

2.
C

onvert R
 into a D

F
A

 B
3.

R
un earlier T

M
 for A

D
F

A
on <B

,w
>

71

Emptiness Testing
A

nother problem
 relating to D

F
A

s
is the

em
ptiness problem

:
E

D
F

A
=

 {<A
>

| A
 is a D

F
A

 w
ith L(A

) =
 ∅

}

H
ow

 to decide this language?

T
his language concerns the behavior of the

D
F

A
 A

 on all possible strings.

Less obvious than the previous exam
ples.

72

Proof for DFA-Emptiness
A

lgorithm
 for E

D
F

A
on input A

=
(Q

,Σ
,δ,q

start ,F
):

1)
If A

 is not proper D
F

A
: “reject”

2)
M

ake set S
 w

ith initially S
=

{q
start }

3)
R

epeat |Q
| tim

es:
a)

If S
 has an elem

ent in F
 then “reject”

b)
O

therw
ise, add to S

 the elem
ents that

can be δ-reached from
 S

 via:
“If ∃q

i ∈
S

and ∃s∈
Σ

w
ith δ(q

i ,s)=
q

j ,
then q

j goes into S
new ”

4)
If final S

∩
F

 =
 ∅

“accept”

73

DFA-Equivalence
A

 problem
 that deals w

ith tw
o D

F
A

s:
E

Q
D

F
A

=
 {<A

,B
>

| L(A
) =

 L(B
) }

T
heorem

: E
Q

D
F

A
is T

M
-decidable.

P
roof: Look at the sym

m
etric difference

betw
een

the tw
o languages:

N
ote: “L(A

)=
L(B

)”
is equivalent w

ith an em
pty

sym
m

etric difference betw
een L(A

) and L(B
).

T
his difference is expressed by standard D

F
A

transform
ations: union, intersection, com

plem
ent.

))B
(L

)A(
L(

))B
(L

)A(
L(

∩
∪

∩

74

Proof of Theorem (cont.)
A

lgorithm
 on given

<<< <A
,B

>>> >:
1)

If A
 or B

 are not correct D
F

A
: “reject”

2)
C

onstruct a third D
F

A
 C

 that accepts the
language

3)
D

ecide w
ith the T

M
 of the previous theorem

w
hether or not C

∈
E

D
F

A

4)
If C

∈
E

D
F

A
then “accept”;

If C
∉

E
D

F
A

then “reject”

))
B(L

)A
(L(

))
B(L

)A
(L(

∩
∪

∩

75

Context-Free Languages
S

im
ilar languages for context-free gram

m
ars:

A
C

F
G

=
 { <G

,w
>

| G
 is a C

F
G

 that generates w
 }

E
Q

C
F

G
= { <G

,H
>

| G
 and H

 are C
F

G
s

w
ith L(G

)=
L(H

) }

E
C

F
G

=
 { <G

>
| G

 is a C
F

G
 w

ith L(G
)=∅

}

T
he problem

 w
ith C

F
G

s
and P

D
A

s
is that they

are inherently nondeterm
inistic.

76

Chomsky Normal Form
D

efinition
A

 context-free gram
m

ar G
 =

 (V
,Σ

,R
,S

) is in C
hom

sky
norm

al form
if every rule is of the form

A
 →

B
C

 or A
 →

x
w

ith variables A
∈

V
 and B

,C
∈

V
 \{S

}, and x∈
Σ

. F
or the start

variable S
 w

e also allow
 “S

 →
ε”

T
he derivation S

 ⇒
* w

 requires 2|w
|–1 steps

(apart from
 S

 ⇒
ε).

E
very context-free gram

m
ar can be transform

ed into an
equivalent C

hom
sky N

F
 gram

m
ar.

77

Deciding CFGs(1)
T

heorem
:

T
he language

A
C

F
G

= { <G
,w

>
| G

 is a C
F

G
 that generates w

 }
is T

M
-decidable.

P
roof:

P
erform

 the follow
ing algorithm

:
1)

C
heck if G

 and w
 are correct, if not “reject”

2)
R

ew
rite G

 to G
’in C

hom
sky norm

al form
3)

T
ake care of w

=ε
case via S

→
ε

check for G
’

4)
List all G

’derivations of length 2|w
|–1

5)
C

heck if w
 occurs in this list;

if so “accept”; if not “reject”

78

Deciding CFGs(2)
T

heorem
:

T
he language

E
C

F
G

= { <G
>

| G
 is a C

F
G

 w
ith L(G

)=∅
}

is T
M

-decidable.

P
roof:

P
erform

 the follow
ing algorithm

:
1)

C
heck if G

 is proper, if not “reject”
2)

Let G
=

(V
,Σ

,R
,S

), define set T
=Σ

3)
R

epeat |V
| tim

es:
•

C
heck all rules B

→
X

1 …
X

k
in R

•

If B
∉

T
 and each X

1 …
X

k
is in T

 then add B
 to T

4)
If S

∈
T

 then “reject”, otherw
ise “accept”

79

Equality CFGs

E
Q

C
F

G
= { <G

,H
>

| G
 and H

 are C
F

G
s

w
ith L(G

)=
L(H

) }?

F
or D

F
A

s
w

e could use the em
ptiness decision

procedure to solve the equality problem
.

W
hat about the equality language

F
or C

F
G

s
this is not possible…

(w
hy?)

…
because C

F
G

s
are not closed under

com
plem

entation or intersection.

Later w
e w

ill see that E
Q

C
F

G
is not T

M
-decidable.80

Deciding Languages
W

e now
 know

 that the languages:

A
C

F
G

=
 { <G

,w
>

| G
 is a C

F
G

 that generates w
 }

A
D

F
A

=
 { <B

,w
>

| B
 is a D

F
A

 that accepts w
 }

are T
M

 decidable.

W
hat about the obvious next candidate
A

T
M

=
 {<M

,w
>

| M
 is a T

M
 that accepts w

 }?

Is one T
M

 capable of sim
ulating all other T

M
s?

81

The Universal TM
G

iven a description <M
,w

>
of a T

M
 M

 and
input w

, can w
e sim

ulate M
 on w

?

W
e can do so via a universal T

M
U

 (2-tape):
1)

C
heck if M

 is a proper T
M

Let M
 =

 (Q
,Σ

,Γ
,δ,q

0 ,q
accept ,q

reject)
2)

W
rite dow

n the starting configuration
<

q
0 w

 >
on the second tape

3)
R

epeat until halting configuration is reached:
•

R
eplace configuration on tape 2 by next

configuration according to δ
4)

“A
ccept”

if q
accept is reached; “reject”

if q
reject

82

The Halting Problem
T

he existence of the universal T
M

 U
 show

s that
A

T
M

=
 {<M

,w
>

| M
 is a T

M
 that accepts w

 }
is T

M
-recognizable, but can w

e also decide
it?

T
he problem

 lies w
ith the cases w

hen M
 does

not halt on w
. In short: the halting problem

.

W
e w

ill see that this is an insurm
ountable

problem
: in general one cannot decide if a T

M
w

ill halt on w
 or not, hence A

T
M

is undecidable.

83

Are there undecidablelanguages?
F

or Σ
=

{0,1}, there are 2
k

w
ords of length k.

�
A

 language is a set w
ords: there are languages L ⊆

Σ
k.

�
A

 T
M

 M
 an be described by a string: there are 2

k T
M

s of length k.

A
n idea

Let us count languages and T
M

s, if T
M

s
are less than languages then w

e
know

 that som
e language cannot be com

puted!!

H
ow

ever, languages and T
M

s
are infinite and w

e need a m
ore sophisticate

w
ay to com

pare them

)2(k2

84

Cardinality
A

 set S
 has k elem

ents if and only if there is
a bijection

possible betw
een S

 and {1,2,…
,k}.

S
 and {1,…

,k} have the sam
e cardinality.

If there is a surjection possible from
 {1,…

,n}
to S

, then n ≥
|S

|.

W
e can generalize this w

ay of com
paring the

sizes of sets to infinite ones.

85

Countable Sets

If there exists a surjective
function F

:N
→

S

�
the set S

 m
ay not be infinite

“T
he set S

 has not m
ore elem

ents than N
.”

If there exists a surjective
function F

:S
→

N
,

�
the set S

 is infinite
“T

he set N
 has not m

ore elem
ents than S

.”

If there exists a bijective
function F

:N
→

S
.

�
T

he set S
 is countable

“T
he sets N

 and S
 are of equal size.”

86

Some Countable Infinite Sets

L L L L L

bb
ba

ab
aa

b
a

aaaaaa
aaaaa

aaaa
aaa

aa
a

)3,
0(

)0,
2(

)1,
1(

)2,
0(

)0,
1(

)1,
0(

)0,
0(

3
3

2
2

1
1

0
6

5
4

3
2

1
0ε ε

−
+

−
+

−
+

O
ne can m

ake bijections
betw

een N
and

Z
, N

2, {a}*, {a,b}*:

87

A Big Countable Set
C

onsider the set N
*, the set of finite sequences

of num
bers: (0)∈

N
*, (4,63)∈

N
*, (1,0,…

,1)∈
N

*.

T
his set is also countable infinite.

H
ow

 do m
ake the bijection

betw
een N

* and N
?

1.
T

here are infinitely m
any prim

es
p

1 =
2, p

2 =
3, p

3 =
5, …

2.
E

very num
ber n∈

{2,3,…
}

has a unique prim
e

factorization: 84 =
 p

1 ·p
1 ·p

2 ·p
4

88

Bijectionbetween Nand N*
Let (n

1 ,n
2 ,…

,n
k)∈

N
*

C
onsider the num

ber
1nk 1n2 1n1

k2
1

p
p

p
m

+
+

+
⋅

=
L

Infinitely m
any prim

es: F
or every k this is possible.

T
he “+

1”
enables us to m

ake a distinction
betw

een (1,4,0) and (1,4).

U
nique prim

e factorization: G
iven m

, w
e can

determ
ine (n

1 ,n
2 ,…

n
k)

89

Uncountable Sets
T

here are infinite sized sets that are not countable.
T

ypical exam
ples are ℜ

, P
(N

) and P
({0,1}*)

W
e prove this by a diagonalization

argum
ent.

In short, if S
 is countable, then you can m

ake a
list s

1 ,s
2 ,…

of all elem
ents of S

.
D

iagonalization
show

s that given such a list,
there w

ill alw
ays be an elem

ent x of S
 that

does not occur in s
1 ,s

2 ,…

90

Uncountabilityof P(N)
T

he set P
 (N

) contains all the subsets of {0,1,2,…
}.

T
here is a bijection

betw
een P

 (N
) and

{0,1}∞
(the set of infinite bit string).

E
ach subset X

⊆
N

can be identified by an infinite
string of bits x

0 x
1 x

2 ... such that x
j =

1 iffj∈
X

.

P
roof by contradiction

: A
ssum

e P
 (N

) is countable.
H

ence there m
ust exist a bijection

F
:N

→
{0,1} ∞

.
“T

here is a list of allinfinite bit strings.”

91

Diagonalization
T

ry to list all possible infinite bit strings:

O
M

L L L L

0
1

0
1

0
3

0
0

0
0

1
2

1
1

1
1

1
1

0
0

0
0

0
0

Look at the bit string on the diagonal of
this table: 0101…

T
he negation of this

string (“1010…
”) does not appear in the table.92

No bijection
N

→
{0,1} ∞

Let F
 be a function

N
→

{0,1} ∞.
F

(0),F
(1),F

(2),…
are all infinite bit strings.

D
efine the infinite string Y

=
Y

0 Y
1 Y

2 …
by

Y
j =

 N
O
T

(j-th
bit of F

(j))

O
n the one hand Y

∈
{0,1} ∞, but on the other

hand: for every j∈
N

w
e know

 that F
(j) ≠

Y

because F
(j) and Y

 differ in the j-th
bit.

F
 cannot be a surjection: {0,1} ∞

is uncountable.

93

Uncountability
W

e just show
ed that there it is im

possible to
have surjection from

 N
to the set {0,1} ∞.

S
im

ilar proofs are possible for the uncountability
of the sets ℜ

, P
 ({0,1}*), …

.

94

Counting TMs
O

bservation: E
very T

M
 has a finite description;

there is only a countable num
ber of different T

M
s.

(A
 description <M

>
can consist of a finite string

of bits, and the set {0,1}* is countable.)

O
ur definition of T

uring recognizable languages
is a m

apping betw
een the set of T

M
s {M

1 ,M
2 ,…

}
and the set of languages {L(M

1),L(M
2),…

}⊆
P

 (Σ
*).

Q
uestion: H

ow
 m

any languages are there?

95

Counting Languages
T

here are uncountable m
any different languages

over the alphabet
ΣΣΣ Σ

={0,1}: the set of languages is
P

 ({0,1}*)

W
ith the lexicographical ordering ε,0,1,00,01,…

of Σ
*,

every L coincides w
ith an infinite bit string via its

characteristic sequence
χ

L .
E

xam
ple for L=

{0,00,01,000,001,…
} w

ith χ
L =

 0101100…L L L

1
1

1
0

0
1

1
0

1
0

X
X

X
X

X
X

L
010

001
000

11
10

01
00

1
0

*L χ
ε

Σ

96

Counting TMs and Languages
T

here is a bijection
betw

een the set of languages

over the alphabet Σ
=

{0,1} and the uncountable
set of infinite bit strings {0,1} ∞.
�

T
here are uncountable m

any different

languages L⊆
{0,1}*.

�
H

ence there is no surjection possible from
 the

countable set of T
M

s to the set of languages.
S

pecifically, the m
apping L(M

) is not surjective.

C
onclusion: T

here are languages that are not
T

uring-recognizable. (A
 lot of them

.)

97

Is This Really Interesting?
W

e now
 know

 that there are languages that
are not T

uring recognizable, but w
e do not

know
 w

hat kind of languages are non-T
M

recognizable.

A
re there interesting languages for w

hich
w

e can prove that there is no T
uring

m
achine that recognizes it?

98

Proving Undecidability(1)
C

onsider –again–
the acceptance language

A
T

M
=

 { <M
,w

>
| M

 is a T
M

 that accepts w
 }.

P
roof that A

T
M

is not T
M

-decidable
(C

ontradiction) A
ssum

e that T
M

 G
 decides A

T
M :

  =
w

accept
not

does
 M

if
reject"

"
w

accepts
 M

if
accept"

"
w,

MG

F
rom

 G
 w

e construct a new
 T

M
 D

 that w
ill get

us into trouble…

99

Proving Undecidability(2)
T

he T
M

 D
 w

orks as follow
s on input <M

>
(a T

M
):

1)
R

un G
 on <M

,<M
>>

2)
D

isagree w
ith the answ

er of G
(T

he T
M

 D
 alw

ays halts because G
 alw

ays halts.)

  =
MM,

accepts G if
reject""

MM, rejects
 G if accept"

"MD
In short:

  =
M

accept

does
 M

if
reject"

"
M

accept
not

does
 M

if
accept"

"
MD

H
ence:

N
ow

 run D
 on <D

>
(“on itself”)…

100

Proving Undecidability(3)

  =
D

accept

does
 D

if
reject"

"
D

accept
not

does
 D

if
accept"

"
DD

R
esult:

T
his does not m

ake sense: D
 only accepts

if it rejects, and vice versa.
(N

ote again that D
 alw

ays halts.)

C
ontradiction: A

T
M

is not T
M

-decidable
.

T
his proof used diagonalization

im
plicitly…

101

Review of Proof (1)

O
M

M

K L

accept
accept

M M
accept

accept
accept

accept
M

accept
accept

M
M

M
M

M

4 3 2 1
43

21
‘A

cceptance behavior’of M
i on <M

j >

102

Review of Proof (2)

O
M

M

K L

reject
reject

accept
accept

M
reject

reject
reject

reject
M

accept
accept

accept
accept

M
reject

accept
reject

accept
M

M
M

M
M

4 3 2 1
43

21
‘D

eciding behavior’of G
 on <M

i ,<M
j >>

103
M

L O
M

M

K

L
L

accept
accept

reject
reject

D

reject
reject

accept
accept

M
reject

reject
reject

reject
M

accept
accept

accept
accept

M
reject

accept
reject

accept
M

D
M

M
M

M

4 3 2 1
43

21
Review of Proof (3)

D
isagreeing D

 has to occur in list as w
ell…104

Review of Proof (4)

M

L O
M

M

K

L
L

?
accept

accept
reject

reject
D

reject
reject

accept
accept

M
reject

reject
reject

reject
M

accept
accept

accept
accept

M
reject

accept
reject

accept
M

D
M

M
M

M

4 3 2 1
43

21

C
ontradiction for D

 on input <D
>.

105

Another View of the Problem
T

he “S
elf-referential paradox”

occurs w
hen w

e
force the T

M
 D

 to disagree w
ith itself.

O
n the one hand, D

 know
s w

hat it is going to
do on input <D

>, but then it decides to do
som

ething else instead.

“Y
ou cannot know

 for sure w
hat you w

ill do in
the future, because then you could decide to
change your actions and create a paradox.”106

Self-Reference in Math
T

he diagonalization
m

ethod im
plem

ents the self-
reference paradox in a m

athem
atical w

ay.

In logic this approach is often used to prove that
certain things are im

possible.

K
urt G

ödel gave a m
athem

atical equivalent of
“T

his sentence is not true.”

107

TM-Unrecognizable
A

T
M

is not T
M

-decidable, but it is T
M

-recognizable ?

T
heorem

: A
T

M
is recognizable

P
roof: It is suffcientto sim

ulate M
. R

un the M
 on w

.
If M

 accepts, then accept

108

TM-Unrecognizable
A

T
M

is not T
M

-decidable, but it is T
M

-recognizable.
W

hat about a language that is not recognizable?

T
heorem

: If a language A
 is recognizable

and its com
plem

ent Ā
is recognizable, then A

is T
uring m

achine decidable.

P
roof:

R
un the recognizing T

M
s for A

 and Ā
in

parallel on input x. W
ait for one of the T

M
s to

accept. If the T
M

 for A
 accepted: “accept x”;

if the T
M

 for Ā
accepted: “reject x”.

109

ĀTM is not TM-Recognizable
B

y the previous results it follow
s that Ā

T
M

cannot
be T

M
-recognizable, because this w

ould im
ply

that A
T

M
is T

M
 decidable.

W
e call languages like Ā

T
M

co-T
M

 recognizable.

T
M

 recognizableco-T
M

 recognizable

T
M

 decidable

110

Things that TMs Cannot Do:

E
Q

T
M

=
 { <G

,H
>

| G
 and H

 are T
M

s
w

ith L(G
)=

L(H
) }

E
T

M
=

 { <G
>

| G
 is a T

M
 w

ith L(G
)=∅

}

T
he follow

ing languages are also unrecognizable:

T
o be precise:

•
E

T
M

is co-T
M

 recognizable
•

E
Q

T
M

is not even co-T
uring recognizable

111

Summing upco-T
M

 recognizable

T
M

-recognizable

T
M

 decidable

E
T

M
=

 { <M
>

| M
 is a T

M
 w

ith L(M
)=∅

}

E
Q

T
M

=
 { <G

,H
>

| G
,H

 T
M

s w
ith L(G

)=
L(H

) }

A
T

M
=

 { <M
,w

>
| M

 is a T
M

 that accepts w
 }

A
ll languages112

Reducibility
Reducibility

113

Reducibility
It required quite som

e effort to prove that A
T

M
is

not T
M

-decidable.

B
ut now

 w
e can build on this result as follow

s:

If “L is T
M

-decidable”
im

plies “A
T

M
is decidable”,

then L is not decidable.

T
ypical proof outline:

Let M
 be the T

M
 that decides L; w

ith this M
 as a

subroutine, the follow
ing T

M
 […

.] decides A
T

M .
C

onclusion: M
 is not T

M
-decidable.

114

Halting Problem Revisited
T

heorem
: T

he ‘halting problem
’language

H
A

LT
T

M
=

 { <M
,w

>
| the T

M
 M

 halts on input w
 }

is undecidable
(but of course recognizable).

P
roof:Let G

 be a T
M

 that decides H
A

LT
T

M .
T

he follow
ing T

M
 decides A

T
M :

1.
O

n input <M
,w

>
run G

 to decide halting
2.

If G
 rejected <M

,w
>

then “reject”
3.

If G
 accepted <M

,w
>

then copy (reject/accept) output of M
 on w

.
(N

ote that this T
M

 alw
ays produces an output.)

A
T

M
is undecidable, hence such a G

 cannot exist.

115

Emptiness Testing (1)
T

heorem
: T

he language of non-accepting T
M

s
E

T
M

=
 { <M

>
| M

 is a T
M

 w
ith L(M

)=∅
}

is not decidable (but co-T
M

 recognizable).

R
eduction proof: Let G

 be a T
M

 that decides E
T

M …

B
ut how

 to deal w
ith input<M

>
versus <M

,w
>?

P
roof idea : G

iven <M
,w

>, w
e w

ill m
ake a different

T
uring m

achine P
M

w
such that the answ

er to
“P

M
w ∈

E
T

M ?”
w

ill also answ
er “<M

,w
>∈

A
T

M ?”

116

Emptiness Testing (2)
P

roof: G
iven <M

,w
>, define the T

M
 P

M
w

by:
P

M
w

=
 “O

n input x:
1.

If x≠w
 then “reject”

2.
If x=

w
 then run M

 on w
If M

 accepts w
 then “accept”

B
y construction:

E
ither L(P

M
w)=

{w
} if and only if M

 accepts w
,

or L(P
M

w)=∅
if and only if M

 does not accept w
.

D
eciding “P

M
w ∈

E
T

M ?”
decides “<M

,w
>∈

A
T

M ?”

117

Emptiness Testing (3)
F

inal proof: Let G
 be a T

M
 that decides E

T
M .

C
onsider the follow

ing T
M

 on input <M
,w

>
1) C

onstruct T
M

 P
M

w

2) R
un G

 on P
M

w

3) If G
 accepts P

M
w

then “reject”<M
,w

>
4) If G

 rejects P
M

w
then “accept”<M

,w
>

B
ecause:

<P
M

w >
∉

E
T

M
⇐
⇒

M
 accepts w

 ⇐
⇒

<M
,w

>∈
A

T
M

the above T
M

 decides A
T

M , this T
M

 cannot exist.
C

onclusion : E
T

M
is not T

M
-decidable.

118

Rice’s Theorem
C

onsider the generic T
M

-related language

T
=

 { <M
>

| M
 is a T

M
 for w

hich a property P
 holds }

R
ice’s T

heorem
: If

P
 is such that

1) L(M
1) =

 L(M
2) im

plies “<M
1 >∈

T
 ⇐
⇒

<M
2 >∈

T
”

(T
hat is: “M

∈
T

?”
depends only on L(M

).)
2) T

here are tw
o T

M
s M

1
and M

2
w

ith

<M
1 >∈

T
 and <M

2 >∉
T

(T
he language T

 is non-trivial.)

T
hen

the language T
 is undecidable.

119

Proof Idea Rice’s Theorem
A

ssum
e that there is a T

M
 G

 that decides T
…

A
s w

ith the em
ptiness language w

e w
ill take

an input <M
,w

>
for an A

T
M

question, and turn
it into a single T

M
 P

w
such that deciding

“<P
M

w >∈
T

?”
also decides “<M

,w
>∈

A
T

M ?”

P
M

w :

M
 accepts w

?
act like a T

M
∈

T

act like a T
M

 ∉
T

120

Proving Rice cont.

P
roof: G

iven <M
,w

>, define the T
M

 P
M

w
by:

P
M

w
=

 “O
n input x:

1.
R

un M
 on w

2.
If M

 rejected then “reject”
x

3.
If M

 accepted then run Q
 on x

B
y construction:

•
If M

 on w
 rejects or never stops: L(P

M
w)=∅

•
If M

 accepts w
: L(P

M
w) =

 L(Q
)

D
eciding “P

M
w ∈

T
?”

decides “<M
,w

>∈
A

T
M ?”

T
M

s w
ith em

pty language are either in T
 or not.

A
ssum

e that em
pty

language ∉
T

, and <Q
>∈

T
.

121

Final Proof Rice’s Theorem
Let G

 be a T
M

 that decides T
.

T
he follow

ing T
M

 w
ould decide A

T
M

(input <M
,w

>):
1) G

iven M
 and w

, m
ake P

M
w

as described before

2) G
ive sam

e answ
er as G

 on <P
M

w >

C
orrectness proof:

-
If M

 accepts w
: L(P

M
w) =

 L(Q
), hence <P

M
w >∈

T

-
If M

 does not accept w
, then L(P

M
w)=∅

: <P
M

w >∉
T

122

Consequences of Rice’s Thm.
A

lm
ost any language property of T

uring m
achines

is undecidable:

R
egularT

M
=

 { <M
>

| L(M
) is a regular language }

F
inite

T
M

=
 { <M

>
| L(M

) is a finite language }

C
F

G
T

M
=

 { <M
>

| L(M
) is a C

F
G

 language }

123

Deciding Equality
A

s you w
ould expect, the equality language

E
Q

T
M

=
 { <M

1 ,M
2 >

| M
1 ,M

2
T

M
s, L(M

1)=
L(M

2) }
is undecidable.

P
roof Idea : D

eciding E
Q

T
M

for a fixed M
2

gives
already contradictory conclusions.

Let M
∅

be a T
M

 w
ith L(M

∅)=∅
.

A
 T

M
 that decides E

Q
T

M
can also decide E

T
M

by deciding “<M
1 ,M

∅ >
∈

E
Q

T
M ?”

E
Q

T
M

is not even T
M

 or co-T
M

 recognizable…

124

Limited Success thus far
O

ur reductions have been very straightforw
ard:

“A
 T

M
 for this language can be transform

ed into
a sim

ilar T
M

 that decides another language”

A
s a result, the provable undecidable

languages
are very alike A

T
M , E

Q
T

M , H
A

LT
T

M , et cetera.

F
or languages concerning questions not about

T
M

s w
e have to use a m

ore refined reduction.

125

Computation Histories
A

n accepting com
putation history

for a T
M

 M
 on a

string w
 consists of a sequence of configurations

C
1 ,C

2 ,…
,C

k
such that the follow

ing properties hold:

1.
C

1
is the start configuration of M

 on w
2.

E
ach C

j+
1

follow
s properly from

 C
j

3.
C

k
is an accepting configuration

O
bservation: S

tating “<M
,w

>∉
A

T
M ”

is equivalent
w

ith stating “T
here is no accepting com

putation
history C

1 ,…
,C

k
for M

 on w
”.

126

Hilbert’s 10th Problem again
D

ecision problem
:

Let P
(x

1 ,…
,x

n) be a polynom
ial in n variables

∃(x
1 ,…

,x
n)∈

Z
n: P

(x
1 ,…

,x
n) =

 0?

E
xpress com

putation histories as sequences
(x∈

Z
n) of num

bers and the statem
ent

“x
encodes an accepting history for M

 on w
”

by a polynom
ial equation “P

M
w (x) =

 0”.

T
hen, deciding “<M

,w
>∈

A
T

M ?”
is equivalent

w
ith deciding “∃x∈

Z
n: P

M
w (x) =

 0?”

127

Context-Free Languages
R

em
em

ber the language
E

Q
C

F
G

=
 {<G

1 ,G
2 >

| G
1 ,G

2
C

F
G

s
L(G

1)=
L(G

2) }?

W
e can prove the undecidability

of this language
w

ith the use of com
putation histories.

G
oal: Linking A

T
M

w
ith E

Q
C

F
G

T
his w

ill require som
e careful steps.

128

Initial Attempt
<M

,w
>∈

A
T

M
equals

“T
here is an accepting history x of M

 on w
.”

Let’s try to express this as:
<x>∈

L
C

F
G , w

here L
C

F
G

is som
e C

F
 language.

P
roblem

: “<x>∈
L

C
F

G ?”
is decidable…

129

Second Attempt
<M

,w
>∉

A
T

M
equals

“T
here is no accepting history x of M

 on w
.”

equals
“A

ll histories x are non-accepting for M
 on w

”

Let’s try to express this as:
“A

ll <x>∈
L

C
F

G ”,
w

here L
C

F
G

is som
e C

F
 language that contains all

descriptions of non-accepting histories of M
 on w130

A Specific CFG
G

iven a T
uring m

achine M
 and input w

, w
e have

to m
ake a context-free gram

m
ar G

 such that:
x∈

G
 if and only if x does not encode an

accepting history of M
 on w

Let x encode the history C
1 ,…

,C
k , then x∈

G
 if

1) C
1

not proper starting configuration, or
2) T

here is an im
proper C

j →
C

j+
1

transition, or
3) C

k
is not an accepting configuration.

W
e can do this (C

F
L are closed under ‘or’).

131

UndecidabilityCFG Properties
W

ith the previous outline, w
e can prove that

deciding the language
A

LL
C

F
G

=
 {<G

>
| G

 is C
F

G
, L(G

)=Σ
* }

enables us to decide the undecidable
A

T
M

T
heorem

: A
LL

C
F

G
is undecidable

C
orollary: T

he language is E
Q

C
F

G
undecidable.

P
roof: T

ake G
* such that L(G

*)=
 Σ

*, and ask
“<G

1 ,G
* >∈

E
Q

C
F

G ?”

132

Mapping Reducibility
T

hus far, w
e used reductions inform

ally:
If “know

ing how
 to solve A

”
im

plied “know
ing how

to solve B

”, then w
e had a reduction from

 B
 to A

.

S
om

etim
es w

e had to negate the answ
er to the

“∈
A

?”
question, som

etim
es not. In general, it

w
as unspecified w

hich transform
ations w

ere
allow

ed around the “∈
A

?”-part of the reduction.

H
ere now

 com
es rigor…

133

Computable Functions
A

 function f:Σ
*→

Σ
* is a T

M
-com

putable function
if there is a T

uring m
achine that on every input

w
∈

Σ
* halts w

ith just f(w
) on the tape.

A
ll the usual com

putations (addition, m
ultiplication,

sorting, m
inim

ization, etc.) are all T
M

-com
putable.

Im
portant here is that alternations to T

M
s, like

“given a T
M

 M
, w

e can m
ake an M

’such that…
”

can also be described by com
putable functions

that thus have f(<M
>) =

 <M
’>.

134

Mapping Reducible
A

 language A
 is m

apping reducible
to a another

language B
 if there is a T

M
-com

putable function
f:Σ

*→
Σ

* such that: w
∈∈∈ ∈

A
 ⇐⇐⇐ ⇐
⇒

f(w
)∈∈∈ ∈

B
for every w

∈
Σ

*.

A
B

f f
T

erm
inology/notation:

•
A

 ≤
m

B
•

function f is the
reduction

of A
 to B

•
also called:
“m

any-one reducible”

135

A ≤m B

A
f f

B

T
he language B

 can be m
ore difficult than A

.

T
ypically, the im

age f(A
) is only a subset of B

,
and f(Σ

*\A
) a subset of Σ

*\B
.

“Im
age f(A

) can be the easy part of B
”.

136

Decidable A ≤m B

A
f f

B

If A
 is a decidable language, then A

 ≤
m

B
 for every

nontrivial B
. (Let 1∈

B
 and 0∉

B
.)

B
ecause A

 is decidable, there exists a T
M

 M
 such that M

 outputs
“accept”

on every x∈
A

, and “reject”
on x∉

A
.

W
e can use this M

 for a T
M

-com
putable function f w

ith

f(x)=
1∈

B
 if x∈

A
and f(x)=

0∉
B

 if x∉
A

“T
h

e
 fu

n
ctio

n
 f

d
o

e
s a

ll th
e

d
e
cisio

n
-w

o
rk”

137

Decidability obeys ≤m Ordering
T

heorem
: If A

≤
m B

and B
 is T

M
-decidable,

then A
 is T

M
-decidable.

P
roof: Let M

 be the T
M

 that decides B
 and f the

reducing function from
 A

 to B
. C

onsider the T
M

:
O

n input w
:

1) C
om

pute f(w
)

2) R
un M

 on f(w
) and give the sam

e output.

B
y definition of f: if w

∈
A

 then f(w
)∈

B
.

M
 “accepts”

f(w
) if w

∈
A

, and
M

 “rejects”
f(w

) if w
∉

A
.

138

Undecidabilityobeys ≤m Order
C

orollary: If A
≤

m B
and A

 is undecidable,
then B

 is undecidable
as w

ell.
P

roof: Language A
 undecidable

and B
 decidable

contradicts the previous theorem
.

E
xtra: If A

≤
m B

, then also for the com
plem

ents
(Σ

*\A
) ≤

m
(Σ

*\B
)

P
roof : Let f be the reducing function of A

 to B
w

ith w
∈

A
 ⇐
⇒

f(w
)∈

B
. T

his sam
e com

putable
function also obeys “v∈

(Σ
*\A

) ⇐
⇒

f(v)∈
(Σ

*\B
)”

for all v∈
Σ

*

139

Recognizabilityand ≤m
T

heorem
: If A

≤
m B

and B
 is T

M
-recognizable,

then A
 is T

M
-recognizable.

P
roof: Let M

 be the T
M

 that recognizes B
 and f

the reducing function from
 A

 to B
. A

gain the T
M

:
O

n input w
:

1) C
om

pute f(w
)

2) S
im

ulate M
 on f(w

) and give the sam
e result.

B
y definition of f: w

∈
A

 equivalent w
ith f(w

)∈
B

.
M

 “accepts”
f(w

) if w
∈

A
, and

M
 “rejects”

f(w
)/does not halt on f(w

) if w
∉

A
.

140

Unrecognizabilityand ≤m
C

orollary: If A
≤

m B
and A

 is not T
uring-recognizable,

then B
 is not recognizable as w

ell.
P

roof : Language A
 not T

M
-recognizable and B

recognizable contradicts the previous theorem
.

E
xtra: If A

≤
m B

and A
 is not co-T

M
 recognizable,

then B
 is not co-T

uring-recognizable as w
ell.

P
roof: If A

 is not co-T
M

-recognizable, then the
com

plem
ent (∑

*\A
) is not T

M
 recognizable.

B
y

A
≤

m B
w

e also know
 that (∑

*\A
) ≤

m
 (∑

*\B
).

P
revious corollary: (∑

*\B
) not T

M
 recognizable, hence

B
 not co-T

uring-recognizable .

141

An Old Result
A

d nauseam
: T

he em
ptiness language

E
T

M
=

 { <M
>

| M
 is a T

M
 w

ith L(M
)=∅

}
is not T

uring recognizable.
S

im
ple proof via (Ā

T
M

≤
m

E
T

M):
Let f on input <M

,w
>

give <M
’>

as output w
ith:

M
’: Ignore input

R
un M

 on w
If M

 accepted w
 then “accept”

otherw
ise “reject”

N
ow

: <M
,w

>∈Ā
T

M
⇐
⇒

f(<M
,w

>) =
 <M

’>∈
E

T
M

142

Something is still missing …

co-T
M

 recognizable

T
M

-recognizable

T
M

 decidable

E
T

M
=

 { <M
>

| M
 is a T

M
 w

ith L(M
)=∅

}

E
Q

T
M

=
 { <G

,H
>

| G
,H

 T
M

s w
ith L(G

)=
L(H

) }

A
T

M
=

 { <M
,w

>
| M

 is a T
M

 that accepts w
 }

A
ll languages

143

EQ
TM is not TM Recognizable

P
roof(by show

ing Ā
T

M
 ≤

m
 E

Q
T

M):

Let f on input <M
,w

>
give <M

1 ,M
2 >

as output w
ith:

M
1 : “reject”

on all inputs
M

2 : Ignore input
R

un M
 on w

“accept”
if M

 accepted w

W
e see that w

ith this T
M

-com
putable f:

<M
,w

>∈Ā
T

M
⇐
⇒

f(<M
,w

>) =
 <M

1 ,M
2 >

∈
E

Q
T

M

B
ecause Ā

T
M

is not recognizable, so is E
Q

T
M .

144

EQ
TM is not co-TM Recognizable

P
roof(by show

ing A
T

M
 ≤

m
 E

Q
T

M):

Let f on input <M
,w

>
give <M

1 ,M
2 >

as output w
ith:

M
1 : “accept”

on all inputs
M

2 : Ignore input
R

un M
 on w

“accept”
if M

 accepted w

W
e see that w

ith this T
M

-com
putable f:

<M
,w

>∈
A

T
M

 ⇐
⇒

f(<M
,w

>) =
 <M

1 ,M
2 >

∈
E

Q
T

M

B
ecause A

T
M

is not co-recognizable, so is E
Q

T
M .

145

Partial ≤m Ordering

≤≤≤ ≤
m

A
T

M

Ā
T

M

E
Q

T
M

≤≤≤ ≤
m

?

≤≤≤ ≤
m

≤≤≤ ≤
m

≤≤≤ ≤
m

TRIVIAL

DECIDABLE

146
About
Aboutfirst

first order
orderlogic

logic

147

First Order Logic
First Order Logic (FOL)
�extends propositional logic
�a FOL contains�constants: a,b,c…denote objects in asomedomains

�variables: x,y,…they can assume the value of an object of the domain
�the existential quantifier: ∃x stands for x exists …
�the universal quantifier: ∀x stands for each x ...
�predicates: P(x,y) is a fact about x and y that may be true or false
�functions: f(x) is another object determined as function of x
�operators of propositional logic: ¬, ∧,∨, →

�examples of sentences in FOL
�

∃x∀y
¬(P(x,y) ∧Q(x,y))

�
∀x∀yP(x,y) →Q(f(x),f(y))

148

Truth in FOL
�

A FOL sentence is true (valid) or not true (valid) with respect
to a modeland an interpretation
�a model is a set of objects
�an interpretation specifies the meaning of constant, variables,
functions and predicates in the model

�f.i. ∀x∀yy*(x+1)=y*x+y, when the model is the set of integers and
the predicate = and functions *, are given the usual interpretation

�
logical validity
�is a sentence is logically validif it is true in every model and
interpretation,f.i. ∀x∀y

¬P(x,y) ∨P(x,y), ∃x ¬Q(x) →
¬

∀x ¬Q(y),
�a sentence true for some model and interpretation is called satisfiable,
otherwise it is called unsatisfiable

149

Axioms, Inferences rules, theories
A theory contains inference rules and hypotheses

Hypotheses
�

are sentences that are assumed to be true in the
considered domains and interpretations

Inference rules
�

relates a fixed number sentence (premises) to a
sentence (conclusion)

�
are used to prove other sentences (theorems)!!150

Completeness and soundness
For a theory with hypothesesHand rules Rlet us denote
�H |= Aif the sentence Ais true for all the models and interpretations where H is

true�H |-R Aif the sentence Acan be deduced from H by the rulesR
A theory is �sound, if H |-R A impliesH |= A
�complete, if H |=A impliesH|-R A
Of course, �soundness is essential
�completeness is very desired ….!!!

151

Valid, unsatisfiable, satisfiable,
sentences

Valid sentences
H|-A H|-¬A

When a theory is sound

Theorems
H|=

¬A
H|= A A or ¬A depends on the model

Satisfiablesentences152

Logical axioms
Consider the general FOL where only the logical symbols are
defined

�
only one rule exists,
if A→B and A are true, then deduce B

�
only the (logical) axioms are considered, where t,r,sare terms
�(∀x P(x)) →P(t)
�P(t) →(∃x P(x))
�(∀x (W →P(x))) →(W →

∀x P(x))
�(∀x (P(x) →W)) →(∃x P(x) →W)
�t →(r →s), t ∧r

→t,.. and otheraxioms of propositional logic
Gödel completeness theorem states that

The above FOL theory is complete and sound!!

153

Valid, unsatisfiable, satisfiable,
sentences in general FOLValid sentences

H|-AH|-¬A
When a theory is sound and completeTheorems

H|=
¬A

H|= A A or ¬A depends on the model
Satisfiablesentences154

FOL and calculability
Let us consider the sets
�the theorems T={A| |-A} of the theory
�the valid sentences V={A| |=A} of the theory
The following holds
�T is recursively enumerable
�since, T=V, V is recursively enumerable, too
�We will see that T, V are not decidable
What does it happen when the theory has also non-logical hypothesis?

155

The theory of natural numbers is
undecidable

Let us consider the theory of natural num
bers w

ith the operators
+

 and *

∀
q ∃p ∀

x,y [p>
q &

 (x,y>
1 →

xy≠p)]
∀

a,b,c,n [(a,b,c>
0 &

 a
n+

b
n=

c
n) →

n≤2]
∀

q ∃p ∀
x,y [p>

q &
 (x,y>

1 →
(xy≠p

&
 xy≠p+

2))]

Let T
h(N

,+
,*) denote the set of all valid sentences in such a theory

•Th(N,+,*) is undecidable!!
Notice that we have not defined a set of hypotheses and derivations
rules, so we can simply assume that the hypotheses are just all the
true sentences in natural number mathematics

156

Proof
S

ketch:
F

or each T
M

 M
, it is possible (not described here) to define a

sentence ∃x R
M

,w
, in the F

O
L of the natural num

bers w
ith +

and *, that is true if x, w
hich is free in RM,w , is a correct

accepting history of w
 on M

.

T
hus, let M

2
be a m

achine that decides Th(N,+,*) . Then, we
can define a TM machine M3 that takes in input <M,w>,
constructs ∃x RM,w and call M2 on it. M3 decides ATM , which is
absurd.

157

Gödel’s incompleteness theorem

It is even w
orse:

natural num
ber theory cannot be axiom

atized

G
ödel’s incom

pleteness theorem
•

N
o sound and com

plete set of axiom
s for the theory of natural

num
ber is recursively enum

erable

158

Proof
S

ketch:
Let us suppose, by reduction to absurd reasoning, that there
is a recursively enum

erable set of axiom
s for integer num

ber
theory.

T
hen the valid sentences of the theory are recursively

enum
erable. S

ince, the for each sentence A
, either A

 or ¬
A

is valid, then valid sentences are also decidable.

This fact is absurd due to the undecidabilityof Th(N,+,*).

159

Validity is undecidable
Using a similar approach as the one used for natural
number, it is possible to prove that

�
The set of valid sentences of basic FOL is undecidable

Notice the difference with natural number theory
�

In natural number theory, for any sentence A, either A
or ¬A is true, but there is no set of axioms that allow
us to decide which one holds

�
In general FOL, if A is valid (a theorem) A, we can
decide whether either A or ¬A holds, but we cannot
decide whether a sentence is valid!!

160

Particular results
S

pecial results m
ay hold for special theories, f.i

�
T

h(N
,+

) is a T
M

-decidable set

�
T

h(N
,+

,×) is a not a T
M

-recognizable set

�
T

h(R
,+

,×) is T
M

-decidable

�
m

onadic predicate logic (predicates w
ith only one

param
eter) is decidable

�
validity of bounded sentences (f.i. ∃x(x<3)…

) is decidable

161
Minimum
Minimum description

descriptionlength
length162

Measuring Information
S

tandard inform
ation theory considers each n bit-

string in {0,1} n
equal.

H
ow

ever, w
e feel a difference betw

een the string
“0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

”
and the string (of equal length)
“0
1
0
1
1
1
0
1
0
1
0
0
1
0
1
0
0
0
1
1
1
0
0
0
1
1
0
0
0
1
1
0
1
1

”.

W
e consider the first string m

ore ‘regular’than
the second one.

163

Regularity
W

e can give a short description of “0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

”
by “17 tim

es 0
1

”.

F
or the other “0

1
0
1
1
1
0
1
0
1
0
0
1
0
1
0
0
0
1
1
1
0
0
0
1
1

0
0
0
1
1
0
1
1

”
this seem

s m
ore problem

atic.

T
his suggests:

A
 regular string is a string that has a short

description; an irregular one has no such sum
m

ary.164

‘Turing Describable’
K

ey idea: W
e allow

 a T
uring m

achine M
 w

ith
input y as a description of a string x if the output
of M

 on y equals x.

A
n x w

ill have m
any different descriptions (M

,y).
W

e consider the size of the shortest description
as an indication of the intrinsic com

plexity
of x.

165

An Encoding for <M,y>
T

he description of the T
M

 M
 and its input y is

going to be one long bit-string:

__
_1

0
1

0
1

0
1

0
0

1
1

 yinput
 Mmachine Turing

4
4

3
4

4
2

1
L

4
4

4
4

4
4

3
4

4
4

4
4

4
2

1
L

L
L

H
ow

 do w
e know

 w
here <

M
>

 stops and <
y>

 starts?

W
e w

ill use a self-delim
iting code for <

M
>

:
tw

o bits “00”
for ‘zero’,

tw
o bits “11”

for ‘one’, and
“01”

for ‘end of string’.

166

Description Length of <M,y>
F

or the encoding of M
 and x w

e concatenate the
self-delim

iting/double bit description of M
 w

ith y.

H
ence from

 now
 on: <M

,y>
 =

 <
M

>
y.

F
or the length of <

M
,y>

 this im
plies:

|<
M

,y>
| =

 |<
M

>
| +

 |y|

N
ote that the y∈

{0,1}* is encoded trivially.

167

Descriptive Complexity of x
(F

ix a universal T
uring m

achine U
.)

T
he descriptive com

plexity
K

(x) of a string x is
the length |d(x)| of its m

inim
al description:

{
} x

outputs
 y

and
 M

on
U:

y
M

min
)x(

K
yM >< =

A
lso know

n as: algorithm
ic com

plexity, or
K

olm
ogorov (S

olom
onoff-C

haitin) com
plexity.168

Description length and information
theory

Let us find a suitable coding to compress the information …
�Messages has to be sent through a communication channel.
�The messages are sequences of symbols in the alphabet S={s1 ,…,sN }..
Description length theory point of view
�To codify a message we send

�a description of the alphabet S,
it has a fix cost CS

�the index of each element of the alphabet
each index can be codified using log(|S|) bits

�Hence K(x) ≤cS +m log(|S|),

169

Description length and information
theory

Shannon source coding theorem states
�that the optimal code satisfies
where H(S) is the entropy of alphabet S and EB(S) is the average
number of bits used to codify the alphabet

�thus the average minimum description length EK(x) of a message is
EK(x) ≤m (H(S)+1)

1
)

(
)

(
)

(
+

≤
≤

S
H

S
E

B
S

H

170

Description length and model
selection
X

?
Y

W
e w

ant to define a m
odel that explains a set of observations X1 ,…,Xn

and Y1 ,…,Yn of a system
. If several m

odels are available, w
hich one has

to be selected?

T
he goals
�

the m
odel should be able to explain w

ell the observations
�

the m
odel should be sim

ple

Get the model such that
�

<
M

>
 is m

inim
um

�M(X)=Y

171

Occam’s Razor
“It is vain to do w

ith m
ore w

hat
can be done w

ith few
er.”

W
illiam

 of O
ckham

 (1290–1349)

A
lternatively:

“E
ntities should not be

m
ultiplied beyond necessity.”

172

Description length and model
selection

An observation X,Y of a system can be defined
�using a model M
�the difference between the predicted output

and the actual output D=Y-M(X)
The goals�the model should be able to explain well the

observations
�the model should be simple
Get the model such that
�<M>D is minimum

. .
.

.
.

..

. .
.

.
.

..

Which model is better ?

173

Description length and learning
In machine learning
•the generalization is the capability of a

trained model to predict the behavior of
a system on unseen patterns

•Usually,•the simpler a model is, the better
generalization can be achieved

•the simpler a model is, a lower
performance is achieved on training
set•The description length may be adopted

as a tool for improving generalization
performance

. .
.

.
.

..

. .
.

.
.

..

Which model is better ?
.

.

.

.

.

.

.

.

train set pattern test set pattern174

Example: description length and
neural networks

Assumption�A source communicates to a receiver the model of a system.
Source and receiver know the input data X1 ,…,Xn .

�The source sends
�a neural network M

its encoding <M> requires to encode each weight by a
binary number

�the difference between the predicted and the actual output
for each input data
the difference D it is encoded by a binary number

175

Example: description length and
neural networks

The minimum description length theory suggests to minimize <M>D
(an intuitive sketch)
�To minimize <M>

The weights of the neural network must be kept small, in order to
minimize the precision required for its representation

�To minimize Dthe expected difference between the predicted output and the actual
output must be kept small, in order to minimize the precision
required for its representation

Thus we have to minimize(
)

(
)

∑
∑

=
=

+
−

mi
i

ni
i

i
w

X
M

Y
1

1

lo
g

)
(

lo
g

β
α

176

How Universal is K?
R

ecall: (F
ix a universal T

uring m
achine U

.)

{
} x

outputs
 y

and
 M

on
U:

y
M

min
)x(

KyM>< =

P
roblem

: T
he function K

 depends on the universal
U

 that is used: w
e should say K

U
instead of K

…

M
aybe that for another T

M
 V

, the com
plexity

m
easure K

V
is m

uch sm
aller than K

U ?

177

Invariance Theorem
T

heorem
: Let U

 be a universal T
M

, then
for any other description m

ethod V
, w

e have

K
U (x) ≤

K
V (x) +

 c for all strings x.

N
ote that the constant c depends on V

 and U
,

but not on x.
P

roof: B
ecause U

 is universal, w
e can give a

finite description to U
 how

 it should sim
ulate V

.
Let this description be of size c.

178

An Obvious First Result
T

heorem
: T

here exists a constant c, such
that K

(x) ≤
|x| +

 c, for every x. (“T
he com

plexity of
a string can never be m

uch bigger than its length.”)

P
roof: Let M

 be the T
M

 that sim
ply outputs its

input string y: M
(y)=

y.
T

hen <
M

>
x is a description of x, and hence

K
(x) ≤

|<
M

>
| +

 |x|. Let c=
|<

M
>

|.

(H
ere w

e benefit from
 our w

ay of encoding (M
,y).

179

Data Compression
T

heorem
: T

here is a constant c such that
K

(xx) ≤
K

(x) +
 c, for every string x.

P
roof: T

ake the T
M

 M
 that given input <

N
>

x:
1) C

alculate the output s of N
 on x

2) O
utput ss

Let d(x) be the m
inim

um
 description <

Q
>

r of x,
then <

M
>

d(x) w
ill give a description of xx.

H
ence, K

(xx) ≤
|<

M
>

| +
 |d(x)| =

 K
(x) +

 c.

180

Concatenation
Y

ou w
ould expect that for all strings x and y:

K
(xy) ≤

K
(x) +

 K
(y) +

 c, for som
e c.

H
ow

ever, this is not true.

T
he problem

 lies –again–
in the separation

betw
een d(x) and d(y).

Instead, w
e have a constant c such that:

K
(xy) ≤

K
(x) +

 K
(y) +

 2log(K
(x)) +

 c,
for all strings x and y.

181

Log Cost of Concatenation
T

heorem
: T

here is a c such that
K

(xy) ≤
K

(x) +
 K

(y) +
 2log(K

(x)) +
 c, for all x,y.

P
roof: Let m

 be the logarithm
 of |d(x)|, then the

string “1
m
0

<
|d(x)|>

 d(x)”
gives a self-delim

iting
description of x.
(W

e need 2m
 bits to indicate the length of d(x).)

H
ence the input “1

m
0

<|d(x)|>
 d(x) d(y)”

gives an
unam

biguous description of xy.

A
lternatively, w

e could double the representation of x, obtaining
a less tight bound K

(xy) ≤
2K

(x) +
 K

(y) +
 c

182

Incompressibility
T

heorem
: F

or every n there exists at least
one incom

pressible string x∈
{0,1} n

w
ith K

(x)≥n.

P
roof:

–
T

here are 2
n

different strings x in {0,1} n.
–

T
here is one description of length 0, tw

o
descriptions of length 1,…

, and 2
n–1

descriptions
of length n–1.
In total: 2

n–1 descriptions of length sm
aller than n.

H
ence, there has to be an x∈

{0,1} n
that has a

m
inim

al description of at least n bits.

183

Incompressibility: more geneally
T

heorem
: F

or every n there exists at least
2

n-2
n-c+

1
+

1 strings that are incom
pressible by c, i.e. such

that satisfy k(x)>
|x|-c

P
roof: A

s in the previous theorem
, there is only 2

n-c+
1

-1
descriptions (strings) having length sm

aller or equal to n-c184

Counting Primes less than n
Q

: H
ow

 m
any prim

es are there less than n?
Let p

1 ,…
,p

m
be the m

 prim
es ≤

n.
W

e know
 that w

e can describe n by:m
em

e
e

p
p

p
n

L
2

1
2

1
⋅

=
H

ence <
e

1 ,…
,e

m >
 gives a description of n.

�
F

or each j w
e have: e

j ≤
log(n).T

hus
<

e
1 ,…

,e
m >

requires less than
m

·log(log(n)) bits.
�

B
y, incom

pressibility, there are n w
ith K

(n) ≥
log(n).

C
onclusion : m

 ≥
log(n) / log(log(n)) for those n.

185

More Carefully Counting of Primes
. H

ence <
e

1 ,…
,e

m >
 gives

a description of N
. F

or each j w
e have: e

j ≤
log(n).

m
em

e
e

p
p

p
n

L
2

1
2

1
⋅

=

�
T

here is an encoding y
n

of e
1 ,…

,e
m

w
ith |y

n | ≤
m

·log(log(n)).
T

he total description <M
>

y
n

requires no m
ore than

c +
 m

·log(log(n)) bits.
�

F
or n w

ith K
(n) ≥

log(n), w
e thus have the bound: log(n) ≤

m
·log(log(n)) +

 c, w
hich im

plies
�

m
 ≥

log(n)/log(log(n)) –
c/log(log(n))

for arbitrary big n.

186

(Un)computability of K
T

o w
hich extent can w

e know
 the value K

(x)?
�

K
(x) ≤

n can be proven by a specific exam
ple

<
M

>
y (w

ith total length ≤
n) that produces x.

�
F

or K
(x) ≥

n w
e w

ould have to prove that all
<

M
>

y (w
ith length <

 n) do not produce x…

K
 can only be approxim

ated ‘from
 above’.

T
rue statem

ents like “K
(x)≤

n”
are recognizable,

but not T
M

-decidable.

187

Richard-Berry Paradox
“T

h
e least n

u
m

b
er th

at can
n

o
t b

e
d

efin
ed

 in
 few

er th
an

 tw
en

ty w
o

rd
s.”

B
y form

alizing this paradox w
e w

ill see that the
problem

 lies in recognizing that a num
ber

cannotbe described in few
er than 20 w

ords.

(T
here is no problem

 w
ith form

alizing “defined”.)188

Richard-Berry Formalized

Proof by contradiction: Assume C decidable.
C

onsider the follow
ing T

M
 M

 (on input n):
1) T

ake s=ε
2) D

ecide <
s,n>

 ∈
C

?
3) If answ

er “no”,
then increase s lexicographically; go to 2)

4) If answ
er “yes”, then print s and halt.

T
he descriptive length of <

M
>

n is c
M +

log(n)…

R
ichard-B

erry P
aradox T

heorem
:

T
he set C

 =
 { <

x,n>
 | K

(x) ≥
n } is not decidable.

189

Richard-Berry Formalized
…

T
he descriptive length of <

M
>

n is c
M +

log(n).
T

ake n big enough such that n >
 c

M +
log(n).

(T
he original paradox has n equal “20 w

ords”.)

T
hen the length of <

M
>

n is less than n, but it
outputs/describes a string s w

ith K
(s) ≥

n.
C

ontradiction.

T
he set { <

x,n>
 | K

(x) ≥
n } is not decidable.

(B
ut it is co-T

M
 recognizable.)

190

Compression and Gödel (1)
T

he im
possibility of calculating K

 gives a sim
ple

w
ay of rephrasing G

ödel’s incom
pleteness thm

.

Let A
 be an attem

pt to find the com
plete set of

axiom
s and derivation rules for T

h(N
,+

,×).

T
here exists an n

A
w

hich is a constant that depends
only on the size of A

 in bits, such that…
…

w
ith A

 w
e cannotprove any

of the true
statem

ents “K
(x) >

 n
A ”.

191

Compression and Gödel (2)
F

or any string x, the statem
ent “K

(x) >
 n”

can be
expressed as a potential elem

ent of T
h(N

,+
,×).

(W
e can form

alize “K
(x) >

 n”
in the language of

the theory of natural num
bers, +

, and ×.)

C
onsider the follow

ing program
 that uses A

 and n:
1) E

num
erate a statem

ents that follow
s from

 A
2) If this statem

ent is of the form
 “K

(x) >
 n”,

then print(x) and halt
3) O

therw
ise: generate next statem

ent and go to 2)192

Compression and Gödel (3)
1) E

num
erate a statem

ents that follow
s from

 A
2) If this statem

ent is of the form
 “K

(x) >
 n”,

then print(x) and stop
3) O

therw
ise: generate next statem

ent and go to 2)

T
he above program

 can be expressed w
ith

less than 2|A
| +

 2log(n) +
 c bits.

(T
he constant c does not depend on A

 or n.)

A
lso, the program

 outputs a string x w
ith K

(x)>
n.

C
ontradiction if n >

 2|A
| +

 2log(n) +
 c.

193

Compression and Gödel (4)

1) E
num

erate a statem
ents that follow

s from
 A

2) If this statem
ent is of the form

 “K
(x) >

 n
A ”,

then print(x) and stop
3) O

therw
ise: generate next statem

ent and go to 2)

S
um

m
ary:

C
onsider a system

 of axiom
s/derivations A

.
T

ake an n
A

w
ith n

A
>

 2|A
| +

 2log(n
A) +

 c.
T

his program
 of length 2|A

| +
 2log(n

A) +
 c:

w
ould print an x w

ith K
(x) >

 2|A
| +

 2log(n
A) +

 c.

C
ontradiction: A

 cannot prove K
(x) >

 n
A .

194

Compression and Gödel (5)
S

um
m

ary:
C

onsider a system
 of axiom

s/derivations A
.

T
ake an n

A
w

ith n
A

>
 2|A

| +
 2log(n

A) +
 c.

W
ith A

 w
e cannot prove “K

(x) >
 n

A ”
for any x.

T
his is a very strong result:

•
F

or all but 2
n

A +
1–1 strings, “K

(x) >
 n

A ”
is true.

•
T

he statem
ent “K

(x) >
 n

A ”
does not use

the content of A
 at all, only the size |A

|.

“Y
o

u
 can

’t p
ro

ve a theo
rem

 o
f o

ne kilog
ram

w
ith

 on
ly o

ne g
ram

 o
f axio

m
s.”

195
Time
Time complexity

complexity

196

Time Complexity
Let M be a Turing machine that halts on all inputs.
Definition: The running time or time complexity
of M is the function f:N

→N, defined by
)

on x

M
of

steps

 tim
e

of

no.
(

m
ax

)
(

|
|

n
x

n
f

=
=

Note: Worst case and size of the input x in bits.
•“f(n) is the running time of M”
•“M is an f(n) time Turing machine”.

197

Time Complexity Classes

Definition: For the function t:N
→N,

the time complexity class TIME(t(n)) is the set of decision
problems:
TIME(t(n)) = { L | there is a TM that decides

the language L in time O(t(n)) }

198

The Polynomial Time Class
Definition: The class of languages that can
be decided by a single tape TM in polynomial
time is denoted by P:

U,...2,1k k)n(TIME
=

=
P

The problems in P are considered efficiently solvable.

199

Examples
Problems in P�given two nodes of a graph, is there path that connect them?
�given two integer numbers, are they relatively prime?
�given a string and a predefined context free language, does the

string belongs to the language?
�…

{
}G

in

 v

n
 to

fro

m
p

a
th

 a

is
th

e
re

|)
,

,
(

v
n

G
P

A
T

H
=

{
}

p
rim

e

re
la

tive
ly

a

re
 b

a

n
d

 a
|)

,
(

b
a

R
E

L
P

R
IM

E=

A
C

F
G

=
 { <G

,w
>

| G
 is a C

F
G

 that generates w
 }200

The Complement Polynomial
Time Class

Definition: The class coPcontains the languages whose
complement can be decided in polynomial time

{
}P

∈
=

A
A

|
coP

Theorem: The complement polynomial class is equal to
the polynomial class

P
coP

=

201

Proof
Proof
Let M be the DTM that decide on A. Build M2 such that
�

M is run on the input w
�

If M accepts, then reject
�

If M rejects, then accept

202

Strong Church-Turing Thesis
All reasonable computational models are polynomial-
time/space equivalent:

•It is possible to simulate one model by another
model with only polynomial time/space overhead.

The answer to the question “A∈P?”does not
depend on the model.

203

Relationships between Turing
machines

Theorem: Every t(n) time multitapeTuring machine has an
equivalent O(t 2(n)) time single-tape Turing Machine
Theorem : Every t(n) time single tape Turing machine has an
equivalent O(t(n)) RAM program
Theorem: Every t(n) time RAM program has an
equivalent O(t 3(n)) single tape Turing machine
The computation time on different Turing machines differs for only
a polynomial time term

204

Proving that a multi-tape TM is
equivalent to a single tape TM

Let M
=

(Q
,Σ

,Γ
,δ,q

0 ,q
accept ,q

reject) be a k-tape T
M

.
C

onstruct 1-tape M
’w

ith expanded Γ
’=

 Γ∪
Γ ∪

{#}

R
epresent M

-configuration
u

1 q
j a

1 v
1 , u

2 q
j a

2 v
2 , …

,
u

k q
j a

k v
k

by M
’configuration

,
q

j # u
1 a

1 v
1 # u

2 a
2 v

2 # …
u

k a
k v

k

(T
he tapes are seperated

by #, the head
positions are m

arked by underlined letters.)

205

Proving that a multi-tape TM is
equivalent to a single tape TM

...
...

1
1

1
v

a
u

M(state q)
...

...
2

2
2

v
a

u

...
...

3
3

3
v

a
u

...
...

#
...

...
#

...
...

#
3

3
3

2
2

2
1

1
1

v
a

u
v

a
u

v
a

u
q

j

M

206

Proving that a multi-tape TM is
equivalent to a single tape TM

O
n input w

=
w

1 …
w

n , the T
M

 M
’does the follow

ing:
1.

P
repare initial string: #w

1 …
w

n #_#
L

#_#_
L

2.
R

ead the underlined input letters ∈
Γ

k

3.
S

im
ulate M

 by updating the input and the
underlining of the head-positions.

4.
R

epeat 2-3 until M
 has reached a halting state

5.
H

alt accordingly.

P
S

: If the update requires overw
riting a # sym

bol,
then shift the part #

L
_ one position to the right.

207

Proving that a multi-tape TM is
equivalent to a single tape TM

�
The simulation of an operation of the multi-tape
operation can cost at most m, where m is the
dimension of the tape

�
m ≤t(n) holds, since the multi-tape TM cannot write
more than a symbol at every operation

�
thus, the number of operation runs by the single tape
TM is smaller than O(m

t(n)) ≤O(t 2(n))

208

Unreasonable Models?
Physical unrealistic requirements for the proper
functioning of the machine.
•Machines using elementary components with infinite
precision
•Unbounded parallel computing
•Machines that requires exponential space and energy.
•Time-travel computing

209

Verifiers and NP
Languages in P have poly-time deciders.
Languages in NP have poly-time ‘verifiers’.

Definition: A verifier for a language A is a
program V such that
A = {<w> | V accepts <w,c> for some c}

The string c is the certificate that proves w
∈A.

Remark
�the length of c is polynomial w.r.t. w

210

Nondeterministic Polynomial Time

Definition:A language L is in NP if and only if
L can be decided by a poly-time by a nondeterministic TM.

Definition : NP is the class of languages
that have polynomial time verifiers.

The following is another equivalent definition

The problems in NP are considered difficult to be solved.

211

Proof:
the two definitions are equivalent

Proof
Let A∈NP have an O(n k) time verifier V.
A polynomial time NTM can guess the O(n k) certificate c
that V has to use for x∈A and simulate V on <x,c>.

Let N be the O(n k) time nondeter. decider for B.
The O(n k) guesses of N define a certificate c.
A polytimedeterministic V can simulate N on <x,c>
and verify “x∈B”for every such x.

212

A problem in NP:
Boolean Formula Satisfiability(SAT)

A
 B

oolean variable
x can be T

R
U

E
 or F

A
LS

E
, w

hich is also denoted
by “1”

or “0”.

S
tandard B

oolean operations
are A

N
D

 (x∧
y),O

R
 (x∨

y), and N
O

T

(¬
x or also x).

T
ypical B

oolean form
ula: φ(x,y) =

 (¬
x∨

y) ∧
(x∨¬

y). T
his φ

is
satisfiable

(by the assignm
ents

x=
y=

T
R

U
E

 and x=
y=

F
A

LS
E

).

S
A

T
 =

 {<φ>
 | φ

is a satisfiable
B

oolean form
ula}

S
A

T
 is in N

P
:

�
a certificate is a assignm

ent of the variables that satisfies the
form

ula.
�

the certificate length is proportional to the num
ber of variables

213

Examples of problems in NP
Example
�

does a given graph contains a clique?

the certificate is a coding of the clique nodes
�

is there a subset of integers in a given set that sum
to a given number?

the certificate is a coding of the subset

{
}

cliq
u

e
-

k
a

co
n

ta
in

s
G

|)

,
(

k
G

C
L
IQ

U
E

=

{
}

  
  

=
⊆

=
=

−
∑∈

Y
i

i
n

x
t

S
Y

,..,x
x

S
S

U
M

S
U

B
S

E
T

such that

exists

it
 ,

 |
t)

(S
,

1

214

Winning $1,000,000

�
The Clay Mathematics Institute named seven open
problems in mathematics the Millennium Problems
�Anyone who solves any of these problems will

receive $1,000,000
�Proving whether or not P equals NP is one of

these problems

215

About P=NP
�

It is believed that P≠NP
�

Several theorems in complexity theory are in the
form of
�if P≠NP then …

�
There is an incredibly large number of open problems
whose solution would allow to decide about P=NP

�
Important cryptography algorithms are based on
P≠NP

216

co-NP
�Definition: The class coNPcontains the languages whose complement can

be decided in polynomial time on a non deterministic TM
ExampleTautology is in coNP. Tautology equals complement of SAT. The

certificate is given by an assignment of the variables for whichthe
formula is false.

Notice that…If a problem is in NP, then its complement is in coNPand vice versa…
{

}
N

P
∈

=
A

A
|

coN
P

{
}t)

assignam
en

any
for

 true

is
(It

 ,
 tautology

a
is

A

 |
A

=
T

A
U

T
O

L
O

G
Y

217

co-NP, NP,…
Remark�differently from P, it is unknown whether NP=coNP, actually it

is supposed NP≠coNP
…we will come back later on this issueP NP

coNP
NP∩coNP

218

co-NP, NP,…
Remark�integer factorization (decision problem) is known to be both in NP and

coNP, but no polynomial algorithm is available
Proof�INT-FACT is in coNP

a certificate (that an integer has factors smaller than k) is given by a
factor�INT_FACT is in NP
A polynomial certificate for prime numbers was produced by Prattin 1975

{
}k

han
sm

aller t
factor

a

has
n
 |

k)
(n,

=
−

F
A

C
T

IN
T

219

Pratt certificate (sketch)
Fermat’s little theorem converse
n is prime if and only if there exist r
1.r is prime to n
2.r n-1=1 (mod n)
3.there is no integer e<n-1 such that r e= 1 (mod n)

(actually, it is sufficient to prove this for every e=(n-1)/pi, where pi is
prime factor of n-1

Notice that�r by itself is not a good certificate, because checking 3 requires to
compute the factors of n-1, which cannot be done in polynomial
time!!A certificate is recursively defined: it contains

1.r2.and the factors of n-1, along with their certificates

220

Pratt certificate: an example
7919 is prime because
�7 7918=1 mod 7919
�7918=2*37*107
�and 7 918/2

≠1 mod 7919, 7 918/37
≠1 mod 7919, 7 918/107

≠1 mod 7919
�2 is prime (…by default)
�37 is prime because

�2 36=1 mod 37�36=3*3*2*2, and 2 36/2
≠1 mod 37, 2 36/3

≠1 mod 37
�2 is prime (…by default)
�3 is prime because

�2 2=1 (mod 3)�2=2, …ok
�107 is prime because

�2 106=1 mod 107
�106=53*2�….. 7

This reasoning can be memorized
and provides the certificate

221

Polynomial Time Reducible
DefinitionA language A is polynomial time reducible to a
another language B if there is a polynomial time
computable function f:Σ*→

Σ* such that:
w

∈∈∈ ∈A ⇐⇐⇐ ⇐
⇒

f(w)∈∈∈ ∈B for every w
∈

Σ*.A
B

f f
Terminology/notation:
•A ≤P B•f is the polynomial
time reduction of A to B

222

Poly-Time Functions
DefinitionA function f:Σ*→

Σ* is a poly-time-computable
function if there is a TM that on every input w

∈
Σ*

halts after poly(|w|) steps with f(w) on the tape.

All the usual computations (addition, multiplication,
sorting, minimization, etc.) are all poly-time.

Important here is that object transformations,
like “Given a formula φ, make a graph G

φ ”can
almost always be done in poly-time.

223

A ≤P B

A
f f

B

The language B can be more difficult than A.

Typically, the image f(A) is only a subset of B,
and f(Σ*\A) a subset of Σ*\B.
“Image f(A) can be the easy part of B”.

224

PolytimeA ≤P B

A
f f

B

Theorem
If A is in P, then A ≤P B for every nontrivial B.

Proof
Since A is in P, there exists a TM M such that M outputs “accept”
on every x∈A, and “reject”on x∉Ain polynomial time.
We can use this M for a TM-computable function f with

f(x)=1∈B if x∈Aand f(x)=0∉B if x∉A “The function f
does all the work”

225

P obeys ≤P Ordering
Theorem:
If A≤P B and B is in P, then A is in Pas well.
Proof: Let M be the poly-time TM for B and f the
reducing function from A to B. Consider the TM:
On input w:
1) Compute f(w)
2) Run M on f(w) and give the same output.
By definition of f: w

∈A if and only if f(w)∈B.
M “accepts”f(w) in poly-time if w

∈A, and
M “rejects”f(w) in poly-time if w

∉A.

226

NP-Completeness
Definition: A language B is NP-complete if
•

B is in NP, and
•

For every language A∈NPwe have A≤P B.
NP-complete problems are the most difficult
problems in NP…
If we omit requirement 1 we define the set NP-hard.
Definition: A language B is NP-hard if
1.for every language A∈NPwe have A≤P B.

227

Why is NP-Completeness important?

Theorem
If there is an NP-complete problem B that

can be decided in deterministic polynomial time, then
for all languages A∈NPwe also have A∈P.

Theorem
If B is NP-complete, then B∈P

if an only if P=NP

If an efficient solution will be found for a NP-complete
language, then an efficient solution will be found for each
language in NP

The question P=NP can be studied by analyzing just any
NP-completelanguage

228

Cook-Levin Theorem

Theorem: SAT is NP-complete

Cook-Levin Theorem proves that there a NP-complete
language exists

229

Proof Outline
Let A

 be a language in N
P

.

F
or every w

, w
e w

ant a (C
N

F
) form

ula φ
w

such
that w

∈
A

 ⇐
⇒

φ
w ∈

S
A

T
, w

ith a poly-tim
e function

that calculates φ
w

from
 w

.

Let N
 be the nondeterm

inistic N
P

that accepts A
.

K
ey idea:

w
∈

A
 ⇐
⇒

∃
accepting path of N

 on w
⇐
⇒

∃
x

1 …
x

m
[φ

w (x
1 …

x
m) =

 T
R

U
E

]

230

More Proof Outline
S

pecifically w
e w

ill establish the chain:

w
∈

A
 ⇐
⇒

∃
accepting path of N

 on w
⇐
⇒

⇐
⇒

∃x
1 …

x
m

[φ
z (x

1 …
x

m) =
 T

R
U

E
]

T
here exists a sequence C

1 ,…
,C

T
 of

configurations w
ith:

-
C

1
the start configuration of N

 on w
-

(C
j ,C

j+
1) a proper N

 transition for every j
-

C
T

an accepting configuration

231

Accepting Path of N on w
C

1
=

C
2

=
..........C

T
=

#

q
#

#
#

#_
_w

wwq
#

A n2
10

LLL
LL

LL
MO

O
M

MO
O

M
M

O
OM

M
O

OM
MO

O
M

MO
O

M
M

O
OM

LLL
LLL

LL
L

L

C
E

LL
W

IN
D

O
W

232

Size of Path of N on w
N

 is a poly-tim
e nondeterm

inistic T
M

:
T

he (accepting) path of N
 on w

 is lim
ited by O

(n
k).

T
he sequence of configurations can described by

a tableau
n

k×n
k

cells:

φ
w (x

1 …
x

m)
describes
this tableau…

444444444
44

3
444444444

44
2

1
LLLL

LLL
MO

O
M

MO
OM

MO
OM

M
O

OM
MO

O
M

MO
OM

MO
OM

LLLL
LLLL LL

              
#

q
#

#
#

#__
www

q#A n21
0

T
=

n
k

n
k

233

How φDescribes the Tableau
T

he m
 B

oolean variables in φ
w (x

1 …
x

m) have
to describe:
-

that each cell is proper
-

that C
1

is the start configuration of N
 on w

-
that the transitions (C

j ,C
j+

1) are proper
-

that C
T

is an accepting configuration
C

1

C
2

......C
T

#
q#

#
#

#__w
wwq#A n210LLLL
LLL

MO
OM

MO
OM

MO
OM

MO
OM

MO
OM

MO
OM

MO
OM

LLLLL
LLL LL

234

How φDescribes the Cells
T

he T
M

 N
 has state set Q

 and tape alphabet Γ
.

T
he content of a cell is in the set Q

∪
Γ∪

{#}.

D
efine the B

oolean variables according to:

  
=

=
otherwise

FALSE
s

j)
cell(i,
 if

TRUE
x)s,j,i(In total there are

n
k×

n
k×

|Q
∪

Γ∪
{#}|

B
oolean x-variables.

T
his is O

(n
2k) polynom

ial in n.

235

φcell for Proper Cells
N

ot all x-assignm
ents m

ake sense.
W

e require that each cell(i,j) has a one description.
F

or every 1≤i,j≤n
k

there should be only one
variable x

(i,j,s) set T
R

U
E

.
T

he cell sym
bols s range from

 1 to c = |Q
∪

Γ∪
{#}|.

H
ence w

e define w
ith the O

N
E

-function:

I kn1j,i
)c,j,i(

)1,j,i(
cell

)
x

,...,
x(

ONE
=

=
φ

236

φstart for the Start Configuration#),n,1(
_),1n,1(

_),3n,1(
)w,2n,1(

)w,3,1()q,2,1(
#),1,1(

start
k

k n
1 0

x
x

x

x
x

x
x

∧
∧

∧

∧
∧

∧

∧
∧

=
φ

−
+

+

L

L

T
he starting state of N

 is q
0 , and the input

string is w
1 ,…

,w
n .

(T
he rest is filled w

ith _-spaces and m
arked on

the left and right by #-sym
bols.)

H
ence:

237

φaccept for Accepting

U kaccept k n1j
)q,j,n(

accept
x

=

=
φ

A
fter the T

M
 N

 has entered the accepting state
q

accept , it stays in this state.
W

e only have to check if the bottom
 row

 contains
the accepting state:

238

φmove for Proper Transitions
T

he last requirem
ent is that the sequence of

configurations C
1 ,C

2 ,…
,C

T
are allow

ed by N
.

W
e can check this by locally

checking all 2×3 w
indow

s.

T
here are (n

k–1)×(n
k–2)

of such w
indow

s:
#q

#
#

#
#__w

wwq#A n210LLLLL
LL

MOO
M

MO
OM

MO
OM

MO
OM

MOO
M

MO
OM

MO
OM

LLLLLL
LL LL

I
I 2n1j 1n1i ovem kk

legal

window
)j

,i(
−=

−=

=
φ

239

Legal Windows
If there is no T

M
 head, the tape should rem

ain
unchanged:

for all a,b,c∈
Γ∪

{#}.

c
b

a
c

b
a

F
or the transitions δ(q

1 ,a) =
 {(q

2 ,b,R
),(q

3 ,c,L)}:

2 1
q

b
a

a
q

a
c

a
q

a
q

a3 1
and

et cetera.240

More Legal Windows
T

he head can m
ove in and out the w

indow
:

2 qba c
b

a
c

a
b

q
a

b4
T

he tape and the T
M

 rem
ain stationary once

an accepting state
has been reached:

b
q

a
b

q
aaccept accept

c
a

q
c

a
b7

et cetera.

241

Some Illegal Windows
F

or various reasons the follow
ing w

indow
s

indicate a m
istake in the configuration sequence:

a
b

a
c

b
a

12 4q
q

b
q

a
b

9 4
q

c
a

b
q

a

c
a

q
c

q
#6 2

M
ost im

portant, this w
indow

:
is illegal if (q

9 ,c,R
) ∉

δ(q
4 ,b)

242

(i,j) Window Legal…

U
L

L)s,...,(s
)s,2j,1i(

)s1,j(i,
)sj,(i,61

6
2

1
)

x
x

(x∈
+

+
+

∧
∧

∧

Let L ⊂
(Q

∪
Γ∪

{#}) 6
be the set of legal w

indow
s.

T
hen “(i,j) w

indow
 legal”

can be expressed by

W
ith these sub-form

ulas w
e can express

I
I 2n1j 1n1i ovem

kk
legal

window
)j

,i(
−=

−=

=
φ

243

The Complete φ
w Formula

T
ogether these four requirem

ents give:accept
move

start
cellw

φ
∧

φ
∧

φ
∧

φ
=

φB
y construction, φ

w
is satisfiable

if and only if
there is an accepting nondeterm

inistic path
of N

 on input w
:

w
∈

A
 ⇐
⇒

φ
w ∈

S
A

T

W
e have to check that w

→
φ

w
is poly-tim

e…

244

PolytimeReduction Check 1
F

ixed T
M

 N
 w

ith tim
e com

plexity O
(n

k)
on input w

1 ,…
,w

n
of length n.

T
here are O

(n
2k) B

oolean variables x
(i,j,s) in φ

w .

I kn1j,i
)c,j,i()

1,j,i(
cell

)
x

,...,
x(

ONE
=

=
φ Last issue: C

an w
e describe φ

w
in poly(n) tim

e?

O
(n

2k) tim
e.

245

PolytimeReduction Check 2
C

an w
e describe φ

in poly(n) tim
e?

…
requires O

(n
k) tim

e.

#),n,1(
_),1n,1(

_),3n,1(
)w,2n,1(

)w,3,1(
)q,2,1(

#),1,1(
start

k
k n

1
0

x
x

x

x
x

x
x

∧
∧

∧

∧
∧

∧

∧
∧

=
φ

−
+

+

L

L

246

PolytimeReduction Check 3
C

an w
e describe φ

in poly(n) tim
e?

…
requires O

(n
2k) tim

e.

U kaccept k n1j
)q,j,n(

accept
x

=

=
φ

I
I 2n1j 1n1i ovem kk

legal

window
)j

,i(
−=

−=

=
φ

…
com

plexity O
(n

k).

247

PolytimeReduction Check 4
G

iven w
1 ,…

,w
n , the construction of

accept
move

start
cell

w
φ

∧
φ

∧
φ

∧
φ

=
φ

requires O
(n

2k) tim
e and space: poly(n).

T
he m

apping from
 w

1 ,…
,w

n
to φ

w
is a poly-tim

e
reduction from

 the N
P

problem
 A

 to S
A

T
:

A
 ≤

P
S

A
T

 for all A
∈

N
P

.

A
s S

A
T∈

N
P

, w
e see that S

A
T

 is N
P

-com
plete

248

Examples
Some NP-complete problems
�

Is a given graph a k-clique?

�
Does the graph contains a Hamiltonian path?

�
is there a subset of integers in a given set that sum
to a given number? {

}
cliq

u
e

-
k

a
is

G

|)
,

(
k

G
C

L
IQ

U
E

=

{
}

p
a

th
n

H

a
m

ilto
n

ia
 a

co
n

ta
in

s
G

|

G
H

A
M

IL
T

O
N

=

{
}

  
  

=
⊆

=
=

−
∑∈Yi

i
n

x
t

S
Y

,..,x
x

S
S

U
M

S
U

B
S

E
T

such that

exists

it
 ,

 |
t)

(S
,

1

249

Examples
Some NP-complete problems
�

Has a given graph a cut of size k?

�
Does an assignment of colorsto the nodes of a graph
exist such that no two adjacent nodes have the same
colors?

�
has a given graph a k-node vertex cover ?

{
}

m
o

re
o

r
k

size

o
f

cu
t

h

a
s

G

|)
,

(
k

G
C

U
T

M
A

X
=

−

{
}

co
lo

rs
 3

 w
ith

co

lo
re

d

b
e

ca
n

G

|

3
G

C
O

L
O

R
S=

{
}

co
ver

 vertex
-

k
h

as
G

 |

k)
(G

,
=

−
C

O
V

E
R

V
E

R
T

E
X

250

More about NP-complete
Remark�NP-complete defines the most difficult problems in NP:

�in fact any problem in NP can be reduced to NP-complete
�NP-hard problems may be even more difficult problem, however

NP-hard contains problems outside NP
P NP NP complete NP hard

difficulty

251

More about NP-complete
Remark�It is unknown whether NP=coNP, but
�NP=P implies NP=coNP(by P=coP)
�and if NP-complete∩coNP

≠0 (or NP∩coNP-complete ≠0), then NP=coNP
ProofAssume there is a problem A is in NP-complete∩coNP.

Since A∈NP-complete, then for any problem B∈NP, we have B≤p A. Since,
A∈coNP, there is polynomial certificate for the complement of A. As a
consequence, there is a polynomial certificate for B. Thus, NP⊆coNP.
Moreover, let C∈coNPand consider its complement , which fulfills

∈NP. By, NP⊆coNP, it follows ∈coNPand, as a consequence, C∈NP.
Thus, coNP⊆NP

C
C

C

252

More about NP-complete
Remark�the possible cases are

�P=NP and NP=coNP
�P≠NP and NP=coNP
�P≠NP and NP≠coNP(the most believed)

�problems in NP
∩coNPare believed to be easier than NP-complete

and coNP-complete
�f.i. integer factorization
�it is unknown whether P= NP

∩coNP P NP coNP
NP∩coNP

NPcomplete
coNPcomplete

253

Are there problems whose complexity
is in the middle between P and NP?

NP-Intermediate=NP-P

Ladner'sTheorem
If P≠NP, then there are problems that do not belong both to
P nor to NP-Complete

However, Ladner's
Theorem does not provide a natural

example of a NP-intermediate problem. Possible candidates
�graph isomorphism
�factoring�discrete logarithm

254

A candidate for NP-interm
ediate

Graph isomorphism is a probable candidate for NP-intermediate
G1 ,G2 are isomorphs if there exist a bijectionf from the nodes of
G1 to those of G2 such that an edge (u,v) exists in G1 if and only
if edge (f(v),f(u)) exists in G2 .

Remarks�Graph isomorphism is in NP: the certificate is any coding of f.
�No polynomial algorithm is known
�No reduction of a NP-complete problem is known

255

Graph isomorphism
the class of problems with a polynomial reduction to graph
isomorphism (GI)

�contains �a subclass of maximunclique
�finite automata isomorphism
�regular graph isomorphism
�directed acyclic graph isomorphism

�we will return on this issue later….

256

Language isomorphism
Polynomiallyisomorphic languages (L1 ,L2 ⊆∑*)
�

there is a bijectionh:∑*→
∑*

�
w

∈L1 if and only if h(w) ∈L2
�

both h and h -1are polynomial time computable
Remark
�

All known NP-complete languages are polynomially
isomorphic!!!

�
…

but the isomorphism among NP-complete languages
has not been proved formally

257

Sparse languages
DefinitionA language is sparse if the number of strings of size n is upper-
bounded by a polynomial in n
DefinitionA language is unary if it contains only one symbol, i.e. L ⊆{0}*
Notice that�NP-complete problems are not sparse languages
�The sparseness could provide another measure of the complexity of a
decision problem:
�perhaps simple languages with “few”strings can be easily recognized.
�Notice, however, that unary languages can be even not computable

�f.i., f(0 n)= accept if and only if <n> is the coding of a satisfiable
booleanformula

258

Sparse languages
Sparse languages are important because
Theoremif P≠NP, then SPARSE⊆NP-intermediate
Theorem if P=NP, then any problem in NP is reducible to a sparse
languageTheoremThere is a sparse language in NP-intermediate if and only NP-
intermediatecontains a unary language
Thus we can study NP=P, by studying unary languages!!

259

Functions problems
�As far, we studied decision problems, what about function

problems?Let A be a language and R a relation such that
A={w| y exists s.t. R(w,y)}
DefinitionThe function problem corresponding to A is

“given w, find y such that R(w,y)”
DefinitionFNP and FP are the classes of function problems computing in

polynomial time on a DTM and a TM, respectively.

260

Functions problems
Remarks�The complexity of a function problem is equal or larger than the

complexity of the corresponding decision problem
�the decision problem can be solved using the function problem

�we can define the concept of a polynomial reducibility also for the
function problems

�we can prove that FSAT is FNP-complete
�we can prove that FSAT can be solved in polynomial time if and

only if SAT can�FSAT is reducible to SAT
TheoremFP=FNP if and only if P=NP

261

FSAT is polynomiallyreducible to SAT
FSAT= “Given a Boolean formula Φ, find an assignment that satisfy Φ”

ProofWegive an algorithm for FSAT
1.check whether Φis satisfiable: if it is not return no
2.else define Φ1 = Φ[x1 =true], Φ2 = Φ[x1 =false], where x1 is a variable
3.check whether Φ1 , Φ2 are satisfiable(one of them must be)
4.set Φ= Φk , where Φk is satisfiable
5.repeat 2-4 for all the variables

262
Space
Space complexity

complexity

263

Space Complexity Classes
The space requirements of a computation are another important
resource that we should be concerned about.
Definition: Let f:N

→N be a function. The space complexity classes :
SPACE(f(n)) = { L | there is a TM that decides the

language L in space O(f(n)) }
NSPACE(f(n)) = { L | there is a nondeterministic

TM that decides the
language L in space O(f(n)) }

264

Savitch’sTheorem
Theorem : For any function f:N

→N with f(n)≥log n, the inclusion
NSPACE(f(n)) ⊆SPACE((f(n)) 2)

holds.Nondeterminismdoes not give you much extra for space
complexity classes.
�Space behaves much nicer than ‘time’.
�Space, unlike time, can be reused.

265

Proof of Savitch’sTheorem
We could simulate the NTM by a TM (the TM emulate each brunch), but
�emulating a NTM would require to visit the NTM solution tree: during

the visit we must keep track of the currently visited brunch
�an acceptingbrunch can be at most 2 O(f(n))long

because, only 2 O(f(n))different memory configurations exist
�a stack with 2 O(f(n))locations is needed …. too much
On the other hand
�also the number of brunches is at most 2 O(f(n))
�and it may be possible to organize those brunches in another tree

data structure having depth O(f(n)) …..

266

c
start

c
accepts

c
accepts

A NPSPACEtree
It has depth 2 O(poly(n)), and
total number of nodes 2 O(poly(n))
(note: less than2 depth.)

First step of the proof:
all the accepting states are
fused

c
start

c
accepts

Proof of Savitch’sTheorem

267

Proof of Savitch’sTheorem
�We define a program CANYIELD(c1 ,c2 ,t):

�accept, if the state c2 can be reached from c1 in t steps on the NTM
�reject, otherwise

�CANYIELD(cstart ,caccept , 2 f(n)) accept if and only if
�the input string corresponding to cstart is accepted by the NTM

�the space used byof CANYIELD
�each configuration ci requires O(f(n))
�the maximum stack depth is O(log(t)), where t= 2 f(n)
�total space is O(f(n) 2)
CANYIELD(c1,c2,t):

1.case t=0, accept if and only if c1 ==c2 .
2.case t>0, for each intermediate state cm
3.run CANYIELD(c1 ,cm ,½t) and CANYIELD(cm ,c2 ,½t)
4.if both steps 3 and 4 accept, then accept
5.if no intermediate state has been accepted, the reject268

PSPACE

Definition : The class of languages that can be decided by a single
tape TM in polynomial space is denoted by PSPACE:

U
,...

2,
1

k

k)
n(

=

=
S

P
A

C
E

P
S

P
A

C
E

269

Some Observations
What about the following relations?
�Pand PSPACE
P

⊆PSPACE, because a program that runs in polynomial time can
access only a polynomial number of memory locations

�NPand NPSPACE
NP

⊆NPSPACE, because each branch of the NTM has polynomial
depth and can access only a polynomial number of memory
locations

270

Some Observations
What about the following relations?
�PSPACEand NPSPACE.

Savitch’stheorem ensures that PSPACE=NPSPACE
�PSPACEand EXPTIME
PSPACE

⊆EXPTIME
There are 2 O(f(n))different configurations for a
SPACE(f(n)) computation…

…hence SPACE(f(n))⊆TIME(2 O(f(n))).
U

,...
2,

1
k

n
)

2(
k

=
=

T
IM

E
E

X
P

T
IM

E

271

A Hierarchy of Classes

EXPTIME
PSPACE

NP
P

We don’t know how to prove P≠PSPACEor NP
≠EXPTIME.

But we do know: P
≠EXPTIME.

P
⊆NP

⊆PSPACE=NPSPACE
⊆EXPTIME

272

SPACE-Completeness
Definition: A language B is SPACE(f(n))-complete if
1) B is in PSPACE(f(n)), and
2) For every language A∈SPACE(f(n))we have A≤ps B,
where ≤

ps
denotes poly-space reductions

Some authors require the reduction to be poly-time, not
poly-space. Poly-time implies poly-space and decrease the
possible reductions
Definition: A language B is SPACE(f(n))-hard if
-for every language A∈

SPACE(f(n))we have A≤s B.

273

TQBF
The typical PSPACE-complete language is true fully
quantified Boolean formulas (TQBF):

TQBF = { φ| φis a true fully q.b. formula }.

Some examples:

T
Q

B
F

])
z

x(
)y

x(
z[

y
x

T
Q

B
F

]y
x[

y
x

∉
∧

∨
∧

∃
∃

∀
∈

⇒
∀

∃

Theorem TQBF is PSPACE-Complete.

274

TQBF

Proof:T
Q

B
F∈

P
S

P
A

C
E

�
A

lgorithm
 T

qbf(Q
1 x

1 ,…
,Q

k x
k Φ

(x
1 ,…

, x
k

))
�

if k=
0, return Φ

�
if Q

k =
 ∃, then
return T

qbf(Q
1

x
1 ,…

,Q
k-1

x
k Φ

(x
1 ,…

, x
k-1 ,true))

∨
T

qbf(Q
1

x
1 ,…

,Q
k

x
k-1 Φ

(x
1 ,…

, x
k

-1 ,false))

�
if Q

k =
 ∀

, then
return T

qbf(Q
1 x1,…

,Q
k-1 xk

Φ
(x1,…

, xk-1,true))
∧

T
qbf(Q

1 x1,…
,Q

k
xk-1 Φ

(x1,…
, xk

-1,false))

Theorem TQBF is PSPACE-Complete.

T
his program

 uses
linear space

275

proof: TQBF is PSPACE-Complete
If A∈PSPACE, then A ≤

ps B

�Idea: Given M and w, we can make a QBF ΦM,w
such that: “w

∈A if and only if ΦM,w ∈TQBF”.
�The TM that decides A takes time 2 O(poly(|w|))on input w.
�The question: YIELD(cstart ,caccept ,2 O(poly(|w|)))?
�We define a QBF φ(c1 ,c2 ,t) of length O(|c|⋅log(t)):
�For φ(c1 ,c2 ,1) this is simple (as in Cook-Levin).
�For φ(c1 ,c2 ,2t) we could try:

φ(c1 ,c2 ,2t) = ∃cm [φ(c1 ,cm ,t) ∧
φ(cm ,c2 ,t)], but in this way, the

length of the stack is |φ(c1 ,c2 ,t)| ~ t, which is too big because t
may equal 2

O
(poly(|w

|)).

276

TQBF is PSPACE-Complete
�Instead, we use φ(c1 ,c2 ,2t)=

∃cm ∀(c3 ,c4)∈{(c1 ,cm),(cm ,c2)} [φ(c3 ,c4 ,t)].
Now the length of φgrows indeed like O(|c|⋅log(t)), which gives a linear
stack even when t =

 2
O

(poly(|w
|)).

�As a result, for every input w, we can make a
QBF ΦM,w = φ(cstart ,caccept ,2 O(poly(|w|))) such that:
“M accepts w (w

∈A)”if and only if “ΦM,w ∈TQBF”,
and size |ΦM,w | = O(poly(n) 2).

The transformation w
→

ΦM,w is poly-time and, thus, it is also poly-space.

277

Space Complexity Classes
Remark�in space complexity the role of the under linear classes is more

important than in time complexity
�for example, search in trees, sorted vectors…..
�In the following we will discuss about

�L= SPACE(logn)
�NL= NSPACE(logn))

278

SUM and MULT belongs to L
�

binary SUM ∈
L

during the sum, only the remainder must be stored
�

binary MUL ∈
L

only two bits must be stored

{
}b

a
c |

)
,

,
(

+
=

=
c

b
a

S
U

M

{
}b

*
a

c |
)

,
,

(
=

=
c

b
a

M
U

L

279

Graph path belongs to NL
�

PATH is in NL=NSPACE(logn)
{

}G
in

 v
n

 to

fro
m

p
a

th

 a
is

th
e

re
|)

,
,

(
u

v
G

P
A

T
H

=

Input:G = (V; E), v, u ∈
V

1. x ←
v

2. counter ←
|V|

3. repeat
4. decrement counter by 1
5. guess a node y ∈

V s.t. (x,y) ∈
E

6. if y ∉
u then x ←

y
7. until y = u or counter = 0
8. if y = u then accept, else reject

T
he algorithm

 search
for the path

•
guessing the node at

each step
•

m
em

orizing only the
last node

280

PATH is NL-complete
∀∀∀ ∀L ∈∈∈ ∈NL, L is log-space reducible to PATH
Input: an input string x, a TM M
Task : output a graph G=(V,E) and two nodes v, u ∈V s.t. there is a

path from v to u in G iffx is accepted by M
�compute n, the number of different configurations of M while

computing input x
�for i = 1 to n for j = 1 to n if there is a transition of M from configuration i to

configuration j, output an edge (i,j) of G
�output the number corresponding to the start and the accepting

configuration

G is returned an edge at each
step…. otherwise G will consume
too much spaceThe machine that implements PATH
will call the reduction any time
it needs an input

281

Immermantheorem and the
complement class

Theoremif there is A s.t. A∈NL-complete and A∈coNL, then NL=coNL
proof�since A∈NL-complete, then for each A' ∈NL. A'≤log Aand x ∈A‘if and

only if f(x) ∈A
�On other hand, let A, A’be the complements of A and A’. x ∈A‘if and

only iff(x)
∈A , so A∈NL implies A'∈NL

(i.e. A∈coNLimplies A'∈coNL)
�thus NL⊆coNL. The converse can be proved in a similar way282

Immermantheorem and the
complement class

Theorem (Immerman,1988)
PATH is NL-complete and belongs to coNL, thus NL=coNL
Immermantheorem can be extended to the other space complexity
classessTheorem:∀s(n)≥log(n), NSPACE(s(n))=coNSPACE(s(n))

283

Log space problems are poly-time
Theorem

NL⊆P

Proof
�

any problem in NL is reducible to PATH
�

the reduction can be carried out in O(logn) and, as
a consequence in O(2 log n)=O(n) time

�
thus, any problem in NL is polynomial time reducible
to PATH

284

Summing up

PSPACE
PNL=

coNL
L

L ⊆⊆⊆ ⊆NL= coNL
⊆⊆⊆ ⊆

P
 ⊆⊆⊆ ⊆

P
S

P
A

C
E

285
Probabilistic
Probabilisticalgorithms

algorithms

286

Probabilistic Turing machine
A probabilistic Turing machine M
�is a non deterministic machine with two legal moves
�each non deterministic step is called coin-flip step
�the probability of a branchb containing k coin-flip steps is
�the probability of accepting wis
�M decides a language A with error probability εif

w
∈Aimplies P(M accepts w)>1-ε

w∉Aimplies P(M rejects w)>1-ε
k

b
P

−
=

2
)

(

∑
=

bra
nch

a

cce
pting a

n

is
b

)
(

)
w

a
cce

p
ts

M(

b
P

P

287

Probabilistic polynomial time
Definition�BPP is the class of languages that are recognized by probabilistic

polynomial time Turing machines with error probability 1/3
TheoremFor any ε<1/2, any polynomial p(n), any probabilistic polynomial time

Turing machine M1 that operates with error
ε, there is another

polynomial time Turing machine M2 that operates with an error 2 -p(n)288

Proof (sketch)
ProofM2 is�we run k instances of M1 in parallel
�if most of the outputs are accept then accept, otherwise reject
The probability that M2 is wrong is
The theorem is proved if

(
)

k

S

k
k

k
S

P
P

)
1(

4
)

1(
2

)
(

)
 w

ro
n

g
is

M(

seq
u

ence
resu

lt

b

ad
 a

is

2
2

ε
ε

ε
ε

−
≤

−
≤

≤
∑

)
1(

4
lo

g

)
(

2
ε

ε
−

≥
n

p
k

289

The class BPP
�
of course, P⊆BPP

�
it is unknown whether NP⊆BPP and/or BPP⊆NP !!

�
It is supposed that NP⊄BPP, otherwise we could have
reasonable algorithms for NP problems

�
Somebody suppose also BPP=P

�
BPP is closed under complement, BPP=coBPP

290

BPP and random number generation
A randomized algorithm needs a source for random numbers ….
�it is unknown whether perfect random numbers can be generated

either by physical devices or mathematical tools
�a perfect random source generate a sequence of bit b1 ,b2 ,…where

P(b1 =y1 ,..bn =yn)=2 -n, for anyy1 ,y2 ,…
δ-BPP�is class of languages that are recognized by probabilistic polynomial

time Turing machines where the probabiltyof each move is in [δ,1-
δ]

instead of being ½(intuitive definition)
�it can be proved that, for any δ<1/2,δ-BPP=BPP!!

291

Primality
Primailityis�is the number p prime?
�Primalityis used by public key cryptographicalalgorithms (f.i. RSA)
�Primalityhas been recently proved to be in P O(log(n) 12), however

this algorithm is very slow in practice
�Primalitycan be tested using random algorithms

292

Miller-Rabin test
Miller-Rabin primalitytest for numbers

function Miller-Rabin(a, p)
�let s, dbe integers where dis odd and that p-1=2 s dholds
�if (

and
�

for any 0≤r≤s-1) return true
�else return false
It can be proved that

if p is not prime, then the Miller-Rabin(a,p) test fails for at lest a half
of the a, where 2≤a≤p-1)p

(m

o
d

 1
=

d
a

)p

(m
o

d
 1

2
=

d r

a

293

Testing primality
A method to test primalityof p
�chose random a1 ,..,ak in [2,p-1]
�check Miller-Rabin(ai , p), for each ai
�if some test fails then accept

else reject
Remark�the above test is carried out in polynomial time on a probabilistic TM

�If the p is prime, the above algorithm always accept,
�If p is composite, the probability of accepting is smaller than 2 -k294

Integer factorization
Integer factorization is
�given an integer n, find its prime decomposition
Integer factorization properites
�it is considered much more difficult then primality
�it is unknown whether is in NP or in co-NP (no polynomial certificate

is known)�However�the corresponding decision problem “does Nhave a factor less
than M?" is known to be in both NP and co-NP

�there is a polynomial algorithm for integer factorization on
quantuncomputers

295

Quantum computing
A quantum Turing machine (intuitive definition)
�a Turing machine where

�the internal state is defined by a finite set of qubits
�the tape is a sequence of qubits
�…About QTMs�each qubitcan be in a state 0, 1, or in a superposition state, thus a

quantum Turing machine can carry out parallel computations…
�in general, quantum computer can produce only a result having some

probability of being correct
�a QTM can solve the same problems as a DTM, but in a faster way!296

Quantum computing
complexity classes

Exact quantum polynomial (EQP)
�languages that can be decided with probability 1 in polynomial time on a

QTM �it is the quantum class corresponding to P
�it has been proved P ⊂EQP, strictly!!
Bounded-errrorquantum polynomial (BQP)
�languages that can be decided with probability larger than 1/3 in

polynomial time on a QTM
�it is the quantum class corresponding to BPP
�it holds P ⊆BPP ⊆BQP ⊆PSPACE, but it is unknown whether the inclusion

is strict for some inclusion!
�it is unknown the relation between NP and BQP
�it has been proved that integer factorization is in BQP (Shoralgorithm)!!!

297
Polynomial
Polynomialhierarchy

hierarchy

298

Oracles
O

racles

L∈
C

1 C
2

:T
here

exists
a

T
M

of

class
C

1
w

ith
access to an oracle in class C

2
that accepts L

E
xam

ples

�
P

C
=

 Languages accepted by D
T

M
w

ith access to an
oracle A

in class C
.

�
N

P
C

=
 Languages accepted by N

T
M

w
ith access to an

oracle A
in class C

299

Polynomial hierarchy
T

he polynom
ial hierarchy extends the definition of P

, N
P

 e coN
P

D
efinition by indution

�
∑

0
:=

 P
�
∑

i+
1

:=
 N

P ∑
I

�
∏

i =
co∑

i

Polynomial hierarchy (PH)
U

i
i

P
H
∑

=

300

An alternative definition

∀x1 ∃x2 ∀x3 …[(x1 ∨¬x2 ∨x8)∧…
∧(¬x6 ∨x3)]

∃x1 …xn (x1 ∨¬x2 ∨x8)∧…
∧(¬x6 ∨x3)

only existential quantifierexistential & universal quantifiers
�

Deciding whether a formula is satisfiablebelongs to

NP-complete
PSPACE-comple

301

An alternative definition
Alternative definition
∑i is the class of all languages reducible to deciding
the sat. of a formula of type

∃x1 ∀x2 ∃x3 …
R(x1 ,x2 ,x3 ,…)

i alternating quantifiers

302

Some inclusions

N
P

∩
coN

P

∑
0 =∏

0 =
P

∑
1 =

N
P

∏
1 =

coN
P

∑
2 ∩

∏
2

∑
2

∏
2

::
::

303

Some properties
PSPACE is an upper bound for the hierarchy PH:
�

PH
⊆PSPACE

M2 contains the languages probabilistically decidable in
polynomial time

�
BPP ⊆∑2

⊆PH
�

notice that if it is unknown whether BPP ⊆∑1 =NP 304

The collapse of the hierarchy
�

Its in unknown whether the inclusions of the
hierarchy are strict, however ….

Theorem
�

If for a k, ∑k = ∑k+1 or ∑k =
∏k then, for any r>k the

hierarchy over k collapses, i.e. ∑r = ∑r+1 =
∏r =

∏r+1
�

In particular, if NP=coNP
(P=NP), then the whole

hierarchy collapses, i.e. PH=NP= ∑k =
∏k

