Presentazione

Gli argomenti trattati

Ricordiamo alcune nozioni di base

Introduzione alla calcolabita
macchine di Turing
decidibilita
linguaggi
esempi di problemi decidibili

Argomenti avanzati
problemi indecidibili
riduzione
teorema di Rice
minimun description length
indecidibilita della logica del primo ordine

Gli argomenti trattati

Introduzione alla complessita
definizione di P, NP, coP, coNP
esempi di problemi in queste classi
riduzione e NP-completezza

Argomenti avanzati
teorema di Cook-Levin
relazioni fra P, NP, NP-completi e i loro complementi
isomorfismo, linguaggi sparsi
complessita spaziale
algoritmi probabilistici
quantum computing

Obbiettivo

L'obbiettivo del corso e

rivedere in maniera formale i concetti su calcolabilita e
complessita gia visti durante il corso di laurea

introdurre alcuni argomenti avanzati

Si tratta di argomenti matematici (definizioni e teoremi)...

per renderli meno noiosi e per ricordarli meglio
cercheremo di dimostrare insieme alcuni risultati
vedremo numerosi esempi

Esame

L'esame consiste in

scegliere un argomento o un problema connesso con gl
argomenti del corso

approfondirlo cercando e studiando la letteratura come se si
dovesse scrivere una review

scrivere una piccolo documento (5-10 pagine) che riassume
quanto appresso

lo stile dovrebbe essere quello di una review che non si limiti
ad elencare solo i riferimenti ma cerchi di riassumerli e
spiegarli (ad esempio, come se stesse preparando delle
dispense per gli studenti del dottorato)

Esame

|
Esempi di argomenti per I'esame
minimum description length e machine learning
quantum computing
algoritmi di fattorizzazione intera
algoritmi per il graph matching

Libri

|
Libro principale
M. Sipser, “Introduction to theory of computation”,
2° edition, Thompson
Altri riferimenti
C. Papadimitriou, “Computational complexity”,
Addison Wesley

C. Toffalori, F. Corradini, S. Leonesi, S. Mancini,
“Teoria della computabilita e complessita”,

McGraw-Hill

Introductory notions

Calculability

|
Computational calculabity theory

the investigation of the problems that can be solved
using reasonable computers

the reasonable computers are those ... that can be
constructed (now or in the future)

Complexity

|
Computational complexity theory

the investigation of the time, memory, or other
resources required for solving computational
problems

the resources are usually measured as a function of
of the input dimension

10

l Big O-Notation

|
It will be extremely convenient to use the following

‘order-notation’ to express our complexities.

Definition: Let f and g be two functions N - R*.

We say and write f(n) = O(g(n)) if and only if there
are two positive constant c and n, such that

f(n) < cg(n) for all n=n,,.

“g(n) is an (asymptotic) upper bound on f(n)".

11

l Little o-Notation

_
Definition: Let f and g be two functions N - R*.
We say and write f(n) = o(g(n)) if and only

* big-O is about “less-or-equal-than”,
o little o Is about “strictly less than”.

12

l Languages

Given an alphabet 2, we can make a word or string
by concatenating the letters of Z.

A language L is a set of words, i.e.
L 2* where * is the kleene operator

Examples
>={0,1,.}, the set of decimal binary numbers
>={a,b,c,d,e f,...}, the set of italian words 13

l Accepted Languages
_

Let L be a language O S

a machine M accept L if

\M..moomcﬁ_. 7 if and only if xOOL

xS —

if and only if XL

14

Reqgular languages

Given an alphabet 2, any expression that can be obtained
by

R = a, with alJX (a symbol of the alphabet)
R = ¢ (the null string)

R =0 (the void expression)

R = (R, | Ry), the alternation

R = (R, R,), the concatenation

R = (R.*), the kleene closure

A language is reqgular if it can be defined by a regular
expression

15

Regular languages: examples

Binary positive numbers
(1]0)*

A decimal number with one integer digit and two decimal digits
(+|-1€)(0]1]2]...]9)* . (0]1]2]...]9) (0]1]2]...]9)

identifiers of a programming language
(alb|c| ... |z]) (a|b]c]| ... |z|O]1] ...]9])*

16

Finite Automaton and
regular languages

|
Alternative definition
A language is regular if and only if it can be accepted by a
finite automaton

A finite (state) automata
a simple machine that reads a single
input character at every time step
has an internal state that can assume
a finite number of different values
internal state are of two different types
(accept, reject) that define whether
the read string is accepted or not

17

Finite Automaton and
regular languages

Formally
A nondeterministic finite automaton (FA) M is defined by a 5-
tuple M=(Q,Z,0,9,,F), with

Q: finite set of states

2. finite alphabet

o: transition function 3:Qx%, - P (Q)
goLQ: start state

FOQ: set of accepting states

The automata is called deterministic or non deterministic
according whether &(q,a) is a singleton or not for each g,a

Finite automaton

The deterministic automaton that recognizes the language:
0*1((1/0) (O]1))*

transition rules mmﬂmm
No// .
— D
\ ~——
starting state \ 0.1

accepting state

19

Some properties of FA and regular
languages

Deterministic FA (DFA) and non deterministic FA (NFA) are
equivalent:

they accept all and only all the regular languages

there exist algorithms to transform a DFA into an equivalent
FA, and vice versa ...

FA and regular expression are equivalent

there exist algorithms to transform a FA to the equivalent
regular expression and, vice versa, ...

Regular languages are closed under union, intersection,
complementation, concatenation

there exist algorithms to transform a FA to another FA that
accepts the complement language

20

Context free languages

Definition A context free grammar G=(V,Z,R,S) is defined by
V: a finite set variables

>: finite set terminals (with VnX=[)

R: finite set of substitution rules V - (VOX)*

S: start symbol OOV

Definition The language of grammar G, denoted by L(G), is the
set of strings of terminal symbols that can be obtained by
applying the substitution rules from the start symbol

L(G) = { wOZ* | S =* w }

21

Example: the boolean algebra

|
G=(V,%,R,S) with

V ={S,Z}

2 ={0,1,().-.LL}
R:

— O

=(S)

- (S)L(S)
- (S)L(S)

numuvum
l

Some elements of L(G):
0
~((=(0))1(1))
(1)X(0)L(0))

22

Parse Trees

S

The parse tree for (0)0((0)()(1)) %

s .ol1~© e e ¢ S)P (s)

/
0 AN
(S)DO(s)

| '
0 1

23

Example:
a simple programming language

G=(V,2,R,S) with

=V ={S,C,E,B}
= ¥ ={id,val,=,(,),if then,== A program in L(G):
mR: S-CS|¢

C - id=E

C - if (B) then Send

E - id|val

B - E==E

24

Pushdown automata

A pushdown automata
is @ machine composed by
a finite state control unit
a stack that contain symbols

it can read one input character at
each step (10

it can add, read and remove
symbols from the stack

stack

O|<|X|>»

Pushdown automata can recognize
(decide) context free languages
25

More about context free languages

A context free language
can be decided by a parsers (automata that use a stack)

can be decided in O(n®) (O(n?) if the language is not
ambiguous)

Context free languages strictly contains regular
languages

for example, the language {a"b"|n>0} is context free
languages, but not a regular language

26

More languages

Context-sensitive grammars
= the rules are in the form
= aAB — ayp

= Where A is a non terminal and a,B,y are strings of terminals
and non terminals, y cannot be null

= therule S — ¢ is allowed if Sdoes not appear on the right side of
any rule

= no algorithm is known to decide Context-sensitive languages in
polynomial time

Unrestricted grammars
= the rules are any form

= ho algorithm is known to decide languages generated by
unrestricted grammars

27

Chomsky language gerarchy

= All inclusions are strict!!

All the languages

28

Turing machines

29

Turing Machines

|
Alan M. Turing (1912-1954)

In 1936, Turing introduced his abstract model for
computation in his article “On Computable Numbers, with
an application to the Entscheidungsproblem”.

At the same time, Alonzo Church published similar ideas
and results.

The Turing model has become the standard model in

theoretical computer science. 30

Informal Description TM

At every step,
— " the head of the

TM M reads a
letter x; from the
one-way infinite
tape.

Depending on its state and the letter x,, the TM

- writes down a letter,
- moves its read/write head left or right, and

- jumps to a new state.

31

Input Convention

I I I I
Wy [Wy | Wy !

I I
I I

Initially, the tape contains the input
wZ*, padded with blanks “_”,
and the TM is in start state q,.

During the computation, the head moves left
and right (but not beyond the leftmost point),
the internal state of the machine changes,
and the content of the tape is rewritten.

32

Output Convention

The computation can proceed indefinitely, or the
machines reaches one of the two halting states:

I I I
<“_._<N_..._<3

I I I
<H_<N_..._<3

33

Turing Machine (Def. 3.3)

A Turing machine M is defined by a

Nu_nc_u_m AO_MH_&_Qobmoomcﬁbﬂm_mob. with
* Q finite set of states

« > finite input alphabet (without “_

o [finite tape alphabetwitn { _} 02 0T

* g, Start state L1 Q

* Oaccept ACCEPL state [Q

* Qreject M€JECt State 1 Q

* 0 the transition function
0! QY Uaccept:rejectt X I = Q X I X {L,R}

34

Configuration of a TM

The configuration of a Turing machine consists of

the current state g1 Q
the current tape contents 1 *
the current head location [{0,1,2,...}

This can be expressed as an element of [M*xQx[*:

L{0j1j1]_[O}#}1:

becomes “101 g4 1_0#1"

35

An Elementary TM Step

Letu,vO™*;ab,cOrl ; q,q0Q, and M a TM with
transition function o.

We say that the configuration “ua g; bv” yields the
configuration “uac g; b” if and only if:

3(ci,b) = (;c.R).

Similarly, “ua g; bv” yields “u g;acb” if and only if
o(q;,b) = (qj,c.L).

36

l State diagrams of TMs

_
Like with PDA, we can represent Turing machines

by (elaborate) diagrams.

If transition rule says: o(q;,b) = (q;,c,R),
then:

b - cR

37

l Terminology

starting configuration on input w: “gyw”
accepting configuration: “Ud¢epV”
rejecting configuration: “uqgjecV"

The accepting and rejecting configurations are
the halting configurations.

38

Example: A={ 0| j=2"}

Wom_“ To build a TM that accepts all and only the strings in
A={0]j=2"}
Approach: If |=0 then “reject”; If j=1 then “accept”;

if j is even then divide by two; if j is odd and >1
then “reject”. Repeat if necessary.

1. Check if j=0 or j=1, accept/reject accordingly

2. Check, by going left to right if the string has

even or odd number of zeros

If odd then “reject”

If even then go back left, erasing half the zeros

goto 1 39

s w

FIGURE 3.4
State diacram for Turine machine Ma

A sample run of M5 on input 0000:

g10000 LG5 x0xu LX (5 X XU
ug2000 q5ux0xu UG5 XX XU
uxg300 U@ x0xu Q5UXXXU
ux0q40 uxq20xuU UgoXXXLI
ux0xqsu UXXg3 XU LUX (o XXLI
ux0gsxu UXXX(q3U UXX(goXu
uxqgs0xu UXX(5 XU LXXX(GoU

UXXXUGaccept
40

l Accepting TMs
_

A Turing machine M accepts input wlx*
if and only if there is a finite sequence of
configurations C,,C,,...,C, with

 C, the starting configuration “q,w”
e for all i=1,...,k-1 C, yields C,,, (following M’s 9)
* Cy Is an accepting configuration “ug,ccepV”

The language that consists of all inputs that are
accepted by M is denoted by L(M).

41

l Turing recognizable
_

A language L is Turing-recognizable if and only
if there is a TM M such that L=L(M).

Also called: a recursively enumerable language.

Note: On an input wlL, the machine M can

halt in a rejecting state, or it can ‘loop’ indefinitely.

How do you distinguish between a very Ic
computation and one that will never halt?

ng

42

Enumerating Languages

When a TM E generates the words of a language,
E is an enumerator (cf. “recursively enumerable”).

A Turing machine E enumerates the language L

if it prints an (infinite) list of strings on the tape
such that all elements of L will appear on the tape,
and all strings on the tape are elements of L.

(E starts on an empty input tape. The strings

can appear in any order; repetition is allowed.)

43

Enumerating = Recognizing

Theorem: A language L is TM-recognizable
if and only if L is enumerable.

Proof: (“if") Take the enumerator E and input w.

Run E and check the strings it generates.

If w is produced, then “accept” and stop,

otherwise let E continue.

(“only if”) Take the recognizer M.

Lets,,s,,...be a listing of all strings UX*[IL.

For j=1,2,... ruyn M on s,...,s; for time-steps.

If M accepts an s, print s. Keep increasing |. 44

Turing Decidable (Def. 3.5)

A language L=L(M) is decided by the TM M if on
every w, the TM finishes in a halting configuration.
(That is: Qyeeep: fOr WL @and Qe for all wiL.)

A language L is Turing-decidable if and only
if there is a TM M that decides L.

Also called: a recursive language.

45

Multitape Turing Machines

A k-tape Turing machine M has k different
tapes and read/write heads. It is thus defined

u< the N-”C_o_m AO_M.ﬂ.&bobmoomcﬁbﬂm_.mﬂv_ with
* Q finite set of states

« 2 finite input alphabet (without *_”
o [finite tape alphabetwith{ _}0>0T
* g, Start state L1 Q

* Qaccept ACCEPL State 1 Q

* Oreject "€JECT State 0 Q

0 the transition function
0. O/ﬁnmnom_ﬂqu_mob X ﬂx - O X ﬂ_A X A_l._wwx

46

l k-tape TMs versus 1-tape TMs

|
Theorem: For every multi-tape TM M, there
is a single-tape TM M’ such that L(M)=L(M’).
Or, for every multi-tape TM M, there is an
equivalent single-tape TM M'.

Proving and understanding these kinds of robustness
results, is essential for appreciating the power of the
Turing machine model.

From this theorem follows:
A language L is TM-recognizable if and only if
some multi-tape TM recognizes L. 47

l Proof sketch

Let M=(Q,2,I",0,00,0accept: Ureject) D€ @ k-tape TM.
Construct 1-tape M’ with expanded I’ = I'J [CCI{#}

Represent M-configuration

UigjaVey, UgiaaVo, .oy Uiy Vi
by M’ configuration

Q;# UV # U@V # . # U@V

(The tapes are seperated by #, the head

positions are marked by underlined letters.)
48

l Proof sketch

On input w=w;,...

PS: If the update requires overwriting a # symbol,

Prepare _:_:m_ m:_:@ HwW,.. W H#_#---H#H_#

Read the underlined input _mﬁmqm Ork
Simulate M by updating the input and the
underlining of the head-positions.

Repeat 2-3 until M has reached a halting state
Halt accordingly.

then shift the part # ---_ one position to the right.

. the TM M’ does the following:

49

l Nondeterministic TMs

A nondeterministic Turing machine M can have
several options at every step. Itis defined by

the N-ﬁc_u_m AO_M.ﬂ_m_no_nmonmgqu_moﬁy with
* Q finite set of states

« > finite input alphabet (without “_”

* [finite tape alphabetwith{ _} 00T

* q, Start state 0 Q

* Oaccept ACCEPL state U Q

* Oreject F€JECT State U Q

* O the transition function
O QYaccept:Arejectt X ' — PQXT X{LR}

50

Computing with Nondeterministic TMs

Evolution of the n.d. TM
represented by a tree
of configurations (rather
than a single path).

If there is (at least)
one accepting leave,
then the TM accepts.

C,

“reject”

‘accept”

C, t=2

51

3

Simulating Nondeterministic TMs
with Deterministic Ones

We want to search every path down the tree
for accepting configurations.

Bad idea: “depth first”. This approach can get
lost in never-halting paths.

Good idea: “breadth first”. For time step 1,2,...
we list all possible configurations of the non-
deterministic TM. The simulating TM accepts
when it lists an accepting configuration.

52

Breadth First
_

Let b be the maximum number
of children of a node.

Any node in the tree can
be uniquely identified by
a string 1 {1,...,b}*.

Example: location of the . o
rejecting configuration is (3,1). accep >

With the lexicographical listing €, (1), (2),..., (b), (1,1),

(1,2),...,(1,b), (2,1),... et cetera, we cover all nodes.

53

Proof of Theorem (simulating NTM)

Let M be the nondeterministic TM on input w.

The simulating TM uses three tapes:

T1 contains the input w

T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w.

1) T1 containsw, T2 and T3 are empty

2) Simulate M on w via the deterministic path
to the node of tape 3. If the node accepts,
“accept”, otherwise go to 3)

3) Increase the node value on T3; go to 2)

54

l Robustness

Just like k-tape TMs, nondeterministic Turing
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent
3-tape Turing machine, which —in turn— has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only
if some nondeterministic TM recognizes it.”

The Turing machine model is extremely robust.

55

l Other Computational Models

_
We can consider many other ‘reasonable’

models of computation: neural networks,
guantum computing...

Experience teaches us that every such model
can be simulated by a Turing machine.

Church-Turing Thesis:

The intuitive notion of computing and algorithm

IS captured by the Turing machine model.

S

56

Random Access Machines

RAM Machines
= Asetof R, R, R ... of registers is available
= Every register is a memory that can contain a positive integer

= Program contains a sequence of instructions in

The sum of the two registers
R, eR,

= Increment: R;++
The registrer is increased by 1
= Decrement: R,--

The register i decreased bl. If the
register is already 0, the instruction has
no effect

= conditional jump: IF R GOTO L1

If the register is not null, we jump at L1

57

Non-deterministic RAM

Is number in R, prime ?

s We use a procedure DIV that check
= In non-deterministic RAM, three other | i ther R, is a factor of R, ?

instructions are available
= random choice: FORK

takes in input two instructions and
execute one of them

= ACCEPT

the machine accepts
= REJECT

the machine rejects

= An input is accept, if there is a path that
allows the program to accept.

58

u-recursive functions

p-recursive functions are defined as

basic functions
constants, f(xy,..,x)=n
increment, S(X)=x+1
projection, Us(Xy,..,X,) =X,

composed functions:

if h, g, are p-recursive functions then f is p-recursive
composition, f(X;,..,X)=h(g;(X{,-X)s---s G(Xys+r%))
recursion, f(0,X;,.-,X)= 9(X{,--,X,)

fy+1,X1,. X)= X150 Xi)s XppeerXi)

59
u-recursive functions: multiplication
_
constants, f(x,,..,X)=n
increment, S(x)=x+1
projection, Us(Xy,..,X)=X,
composition, f(X,,..,%)=h(g,(Xy,-,X)s--s 9 (X3,++1%))
recursion, f(0,Xy,..,X)= 9(Xy,.-,X,)
._..A<+“_.~X“_.~..~X_AijA<\._..A<~X“_.T.~X_Av~ XHT.\X_AV
piu(0,b)=b base recursion: g is the projection operator

piu(a+1,b)=piu(a,b)+1 +~— recursion: h is the successor

per(0,b)=0 * base recursion: g is a constant

per(a+1,b)=piu(per(a,b),b) «—— recursion: h is the composition

of piu and the projection 0

Universal programming languages

A universal programming language (for a RAM machine) must include at least
increment and decrement operators
instruction concatenation and
GOTO and IF or
recursion or
WHILE or
undefined FOR
Remark

A FOR is defined if the values assigned to the FOR variable are defined
before starting the execution of the FOR

f.i. for(i=0;i<10;i++)
a defined FOR is not sufficient to obtain an universal machine. Why? ¢

Decidibility

62

 Hilbert’s 10th Problem

In 1900, David Hilbert (1862—-1943) proposed
his Mathematical Problems (23 of them).

The Hilbert's 10th problem is: Determination of the
solvability of a Diophantine equation.

Given a Diophantine equation with any number of
unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it
can be determined by a finite number of operations
whether the equation is solvable in rational integers.

Diophantine Equations

Let P(Xy,...,X,) be a polynomial in k variables
with integral coefficients. Does P have an
integral root (X4,...,x,)0Zk ?

Example: P(X,y,z) = 6x3yz + 3xy?—x3-10
has integral root (x,y,z) = (5,3,0).

Other example: P(x,y) = 21x2-81xy+1
does not have an integral root.
64

j (Un)solving Hilbert's 10th

_
Hilbert's “...a process according to which it can
be determined by a finite number of operations...”
needed to be defined in a proper way.

This was done in 1936 by Church and Turing.

MatijaseviC proved that Hilbert’s 10th problem
is unsolvable in 1970.

65

l Decidability
|
Thus, we are now ready to tackle the question:

What can computers do and what not?

We do this by considering the question:

Which languages are TM-decidable, Turing-
recognizable, or neither?

Assuming the Church-Turing thesis, these are
fundamental properties of the languages.

66

Describing TM Programs

Three Levels of Describing algorithms:
 formal (state diagrams, CFGs, et cetera)
» implementation (pseudo-Pascal)

* high-level (coherent and clear English)

Describing input/output format:

TMs allow only strings [2* as input/output.

If our X and Y are of another form (graph, Turing
machine, polynomial), then we use <X,Y> to

denote ‘some kind of encoding [12*. o

Deciding Regular Languages

The acceptance problem for deterministic
finite automata is defined by:
Apea = { <B,w> | B is a DFA that accepts w }

Note that this language deals with all possible
DFAs and inputs w, not a specific instance.

Of course, Apg, is a TM-decidable language.

68

Apea is Decidable

|
Proof: Let the input <B,w> be a DFA with

B=(Q, Z, 9, (¢, F) and wlIx*,
The TM performs the following steps:
1) Check if B and w are ‘correct’, if not: “reject”
2) Simulate B on w with the help of two pointers:
P, U Q for the internal state of the DFA, and
P, U{0,1,...,|w|} for the position on the string.
While we increase P, from O to |w|, we
change P, according to the input letter wp,,
and the transition function value o(P,,wp,,).
3) If M accepts w: “accept”; otherwise “reject” 69

Regular Expressions

The acceptance problem

Arex = { <R,w>| R is a regular expression
that can generate w }

is a Turing-decidable language.

Proof Theorem. On input <R,w>:

1. Checkif R is a proper regular expression
and w a proper string

2. ConvertR intoa DFA B

3. Run earlier TM for Agg, on <B,w>

70

Emptiness Testing

Another problem relating to DFAs is the
emptiness problem:
Epea = {<A>| Ais a DFA with L(A) =0 }

How to decide this language?

This language concerns the behavior of the
DFA A on all possible strings.

Less obvious than the previous examples.

71

Proof for DFA-Emptiness

Algorithm for Epg, on input A=(Q,,0,d,,F):
1) If Ais not proper DFA: “reject”
2) Make set S with initially S={q,}
3) Repeat |Q| times:
a) If S has an element in F then “reject”
b) Otherwise, add to S the elements that
can be é-reached from S via:
“If [g;0JS and [0 with &(q;,S)=q;,
then g; goes into S,
4) If final SnF = [“accept”

72

DFA-Equivalence

_
A problem that deals with two DFAs:

EQpra = {<A,B>| L(A) = L(B) }

Theorem: EQpg, IS TM-decidable.
Proof : Look at the symmetric difference between
the two languages: (L(A) nL(B))J(L(A) nL(B))
Note: “L(A)=L(B)” is equivalent with an empty
symmetric difference between L(A) and L(B).
This difference is expressed by standard DFA

transformations: union, intersection, complement.
73

Proof of Theorem (cont.)

Algorithm on given <A,B>:
1) If A or B are not correct DFA: “reject”
2) Construct a third DFA C that accepts the

language (L(A) n L(B)) O (L(A) n L(B))

3) Decide with the TM of the previous theorem
whether or not CUEg,
4) If CUEpg, then “accept”;

If CLEg, then “reject”
74

l Context-Free Languages

|
Similar languages for context-free grammars:

Aces = {<G,w>| G is a CFG that generates w }
Ecrg = {<G>| G is a CFG with L(G)=0 }

EQcrs = { <G,H>| G and H are CFGs
with L(G)=L(H) }

The problem with CFGs and PDAs is that they
are inherently nondeterministic.

75

j Chomsky Normal Form

|
Definition
A context-free grammar G = (V,Z,R,S) is in Chomsky
normal form if every rule is of the form
A - BC or A - X
with variables ALV and B,CLV \{S}, and x[JZ. For the start
variable S we also allow “S - ¢”

Every context-free grammar can be transformed into an
equivalent Chomsky NF grammar.

The derivation S =* w requires 2|w|-1 steps

(apart from S = g). 26

l Deciding CFGs (1)
_

Theorem: The language
Ace = { <G,w>| G is a CFG that generates w }
is TM-decidable.

Proof: Perform the following algorithm:
1) Check if G and w are correct, if not “reject”
2) Rewrite G to G’ in Chomsky normal form
3) Take care of w=¢ case via S - € check for G’
4) List all G’ derivations of length 2|w|-1
5) Check if w occurs in this list;

if so “accept”; if not “reject”

77

l Deciding CFGs (2)
_

Theorem: The language
Ecrg ={<G>| G is a CFG with L(G)=0 }
iIs TM-decidable.

Proof. Perform the following algorithm:
1) Check if G is proper, if not “reject”
2) Let G=(V,Z,R,S), define set T=%
3) Repeat |V| times:
 Checkall rules B-X;...X in R
« |If BUT and each X;...X isinTthenadd Bto T

4) If SOT then “reject”, otherwise “accept”
78

l Equality CFGs
_

What about the equality language

EQcrg = {<G,H>| G and H are CFGs
with L(G)=L(H) }?

For DFAs we could use the emptiness decision
procedure to solve the equality problem.

For CFGs this is not possible... (why?)
... because CFGs are not closed under
complementation or intersection.

Later we will see that EQ.r is not TM-decidable. 7

l Deciding Languages
_
We now know that the languages:
Apea = { <B,w> | B is a DFA that accepts w }
Acrs = { <G,w> | G is a CFG that generates w }
are TM decidable.

What about the obvious next candidate
Ay = {<M,w>| M is a TM that accepts w }?

Is one TM capable of simulating all other TMs?

80

The Universal TM

Given a description <M,w> of a TM M and
input w, can we simulate M on w?

We can do so via a universal TM U (2-tape):
1) Check if M is a proper TM

LetM = AO.M._l_m.Qo_QmoomEbS_.va
2) Write down the starting configuration

< gyw > on the second tape

3) Repeat until halting configuration is reached:

* Replace configuration on tape 2 by next
configuration according to
4) “Accept” if Quecept IS reached; “reject” if g gjec

81

The Halting Problem

_
The existence of the universal TM U shows that

Ay = {<M,w>| M is a TM that accepts w }
Is TM-recognizable, but can we also decide it?

The problem lies with the cases when M does
not halt on w. In short: the halting problem.

We will see that this is an insurmountable
problem: in general one cannot decide if a TM
will halt on w or not, hence A;,, is undecidable.

82

Are there undecidable languages?

|
For X={0,1}, there are 2% words of length k.

k
(2 V_m:_@cmomm L O

A language is a set words: there are2
A TM M an be described by a string: there are 2k TMs of length k.
An idea
Let us count languages and TMs, if TMs are less than languages then we
know that some language cannot be computed!!

However, languages and TMs are infinite and we need a more sophisticate
way to compare them

83

Cardinality

A set S has k elements if and only if there is
a bijection possible between S and {1,2,...,k}.

S and {1,...,k} have the same cardinality.

If there is a surjection possible from {1,...,n}
to S, thenn > |S|.

We can generalize this way of comparing the
sizes of sets to infinite ones.

84

Countable Sets

|
If there exists a surjective function F:S - N,

the set S is infinite
“The set N has not more elements than S.”

If there exists a surjective function F:N - S
the set S may not be infinite
“The set S has not more elements than N.”

If there exists a bijective function F:N - S.
The set S is countable
“The sets N and S are of equal size.”

85

Some Countable Infinite Sets

" One can make bijections between N and
Z, N2, {a}*, {a,b}*:

86

A Big Countable Set

Consider the set N*, the set of finite sequences
of numbers: (0)LIN*, (4,63)LIN*, (1,0,...,1)[IN*.

This set is also countable infinite.
How do make the bijection between N* and N?
1. There are infinitely many primes
P1=2, P,=3, P5=5, .
2. Every number n({2,3,...} has a unique prime
factorization: 84 = p,-p;- P,'P,

87

Bijection between N and N*

_
Let (ny,N,,...,Nn,)OIN*

. — N+l —=n,+1 N, +1
Consider the number M = Py* 5 ..._U_A_A

Infinitely many primes: For every k this is possible.

Unique prime factorization: Given m, we can
determine (ny,n,,...n,)

The “+1” enables us to make a distinction
between (1,4,0) and (1,4).

88

Uncountable Sets

There are infinite sized sets that are not countable.
Typical examples are [0, P(N) and P ({0,1}*)

We prove this by a diagonalization argument.
In short, if S is countable, then you can make a
list s,,S,,... of all elements of S.
Diagonalization shows that given such a list,
there will always be an element x of S that
does not occur in S;,S,,...

89

Uncountability of P (N)

The set P (N) contains all the subsets of {0,1,2,...}.

There is a bijection between P (N) and

{0,1}c0 (the set of infinite bit string).

Each subset XCIN can be identified by an infinite
string of bits X;X;X,... such that x;=1 iff jOIX.

Proof by contradiction : Assume P (N) is countable.

Hence there must exist a bijection F:N - {0,1}~.
“There is a list of all infinite bit strings.”

90

Diagonalization

Try to list all possible infinite bit strings:

Look at the bit string on the diagonal of
this table: 0101... The negation of this
string (“1010...") does not appear in the table.

91

No bijection N - {0,1} ©

Let F be a functionN - {0,1} .
F(0),F(1),F(2),... are all infinite bit strings.

Define the infinite string Y=Y,Y,Y,... by
Y; = NOT(j-th bit of F(j))

On the one hand Y0 {0,1} ®, but on the other
hand: for every jLIN we know that F(j) #Y
because F(j) and Y differ in the j-th bit.

F cannot be a surjection: {0,1} ® is uncountable.

92

l Uncountability
_

We just showed that there it is impossible to
have surjection from N to the set {0,1}*.

Similar proofs are possible for the uncountability
of the sets [0, P ({0,1}%),

93

l Counting TMs
_

Observation: Every TM has a finite description;
there is only a countable number of different TMs.
(A description <M> can consist of a finite string

of bits, and the set {0,1}* is countable.)

Our definition of Turing recognizable languages
IS a mapping between the set of TMs {M;,M,,...}

and the set of languages {L(M,),L(M,),...}OP (Z*).

Question: How many languages are there?

94

Counting Languages

_
There are uncountable many different languages

over the alphabet 2={0,1}: the set of languagesis P ({0,1}¥)
With the lexicographical ordering €,0,1,00,01,... of Z*,

every L coincides with an infinite bit string via its
characteristic sequence ¥, .

Example for L={0,00,01,000,001,...} with x,= 0101100...

2*le 0 1 00 01 10 11 OO0 001 010

95

Counting TMs and Languages

_
There is a bijection between the set of languages

over the alphabet 2={0,1} and the uncountable
set of infinite bit strings {0,1} ©.
There are uncountable many different
languages LL{0,1}*.
Hence there is no surjection possible from the
countable set of TMs to the set of languages.
Specifically, the mapping L(M) is not surjective.

Conclusion: There are languages that are not
Turing-recognizable. (A lot of them.) 9

l Is This Really Interesting?
_

We now know that there are languages that
are not Turing recognizable, but we do not
know what kind of languages are non-TM
recognizable.

Are there interesting languages for which

we can prove that there is no Turing
machine that recognizes it?

97

l Proving Undecidability (1)

Consider —again— the acceptance language
Ay = {<M,w>| M is a TM that accepts w }.

Proof that A |, is not TM-decidable
(Contradiction) Assume that TM G decides A+

"accept" if M accepts w

G(M,w) =
A v "reject" if M does not accept w

From G we construct a new TM D that will get
us into trouble...

98

l Proving Undecidability (2)
_

The TM D works as follows on input <M> (a TM):
1) Run G on <M,<M>>

2) Disagree with the answer of G
(The TM D always halts because G always halts.)

"accept" if G rejects (M, (M))

U _<_ =
In shortD(M) =1, reject” if G accepts (M, (M)

"accept" if M does not accept (M)
"reject” if M does accept (M)
Now run D on <D> (“on itself”)...

Hence:D(M) =

99

l Proving Undecidability (3)

"accept" if D does not accept (D)

Result: UAUV L reject” if D does accept AUV

This does not make sense: D only accepts
if it rejects, and vice versa.
(Note again that D always halts.)

Contradiction: A, is not TM-decidable

This proof used diagonalization implicitly...
100

l Review of Proof (1)

My M) M) (M)

M, | accept accept
M, | accept accept accept accept
_<_w

M, | accept accept

‘Acceptance behavior’ of M; on <M;>

101

j Review of Proof (2)

My M) M) (M)

M, | acecept reject accept reject
M, | accept accept accept accept
M; | reject reject reject reject
M, | accept accept reject reject

‘Deciding behavior’ of G on <M;,<M>>

102

j Review of Proof (3)
|

M) M) M) M) - (D)
M, | accept reject accept reject
M, | accept accept accept accept
M, | reject reject reject reject
M, | accept accept reject reject
D | +eject—roject accept accept

Disagreeing D has to occur in list as well...

103

l Review of Proof (4)
M) My My (M)

aceept reject accept reject
accept accept accept accept
reject reject Teject reject
accept accept reject “reject

Pt

T XXX

R

D |-reject—reject—acecept—acecept

Contradiction for D on input <D>.

104

l Another View of the Problem
_

The “Self-referential paradox” occurs when we
force the TM D to disagree with itself.

On the one hand, D knows what it is going to
do on input <D>, but then it decides to do
something else instead.

“You cannot know for sure what you will do in
the future, because then you could decide to

change your actions and create a paradox.” s

l Self-Reference in Math

_
The diagonalization method implements the self-

reference paradox in a mathematical way.

In logic this approach is often used to prove that
certain things are impossible.

Kurt G6del gave a mathematical equivalent of
“This sentence is not true.”

106

TM-Unrecognizable

A:y Is not TM-decidable, but it is TM-recognizable ?

Theorem : Aty is recognizable

Proof: It is suffcient to simulate M. Run the M on w.
If M accepts, then accept

107

TM-Unrecognizable

Aqy is not TM-decidable, but it is TM-recognizable.
What about a language that is not recognizable?

Theorem : If a language A is recognizable
and its complement A is recognizable, then A
is Turing machine decidable.

Proof: Run the recognizing TMs for A and A in
parallel on input x. Wait for one of the TMs to
accept. If the TM for A accepted: “accept x”;

if the TM for A accepted: “reject x”.

108

Ay is not TM-Recognizable

By the previous results it follows that A}, cannot
be TM-recognizable, because this would imply
that Ay, is TM decidable.

We call languages like A, co-TM recognizable.

109

Things that TMs Cannot Do:

The following languages are also unrecognizable:

E.y={<G>|Gis aTM with L(G)=0 }

EQ:y ={<G,H>| Gand H are TMs
with L(G)=L(H) }

To be precise:
* E;y, IS cOo-TM recognizable
* EQq\ is not even co-Turing recognizable

110

Summing up

All languages\

g

q

.

Ay = .A_<__<<v | M is a TM that accepts w }
Ey = { <M>| M is a TM with L(M)=0 }
EQqy = { <G,H> | G,H TMs with L(G)=L(H) }

111

Reducibility

112

Reducibility

it required quite some effort to prove that Ay, is

not TM-decidable.

But now we can build on this result as follows:

If “L is TM-decidable” implies “A4, is decidable”,
then L is not decidable.

Typical proof outline:

Let M be the TM that decides L; with this M as a
subroutine, the following TM [....] decides Aqy,.
Conclusion: M is not TM-decidable.

113

Halting Problem Revisited

Theorem: The ‘halting problem’ language
HALT;,, = { <M,w> | the TM M halts on input w }
is undecidable (but of course recognizable).

Proof: Let G be a TM that decides HALT,.
The following TM decides A+,
1. Oninput <M,w> run G to decide halting
2. If G rejected <M,w> then “reject”
3. If G accepted <M,w>
then copy (reject/accept) output of M on w.
(Note that this TM always produces an output.)

A:y IS undecidable, hence such a G cannot exist.
114

l Emptiness Testing (1)

|
Theorem: The language of non-accepting TMs

Eqy={<M>|Mis aTM with L(M)=0 }
is not decidable (but co-TM recognizable).

Reduction proof: Let G be a TM that decides Eqy,...

But how to deal with input <M> versus <M,w>?
Proof idea: Given <M,w>, we will make a different
Turing machine P,,, such that the answer to
“PunlErn?” Will also answer “<M,w>[A,?”

115

j Emptiness Testing (2)
_

Proof: Given <M,w>, define the TM P,,,, by:
Puy = “On input x:

1. If x2w then “reject”

2. If x=wthen run M onw

If M accepts w then “accept”

By construction:
Either L(P,,)={w} if and only if M accepts w,
or L(P,,,)=L if and only if M does not accept w.

Deciding “Py,,JE+y?" decides “<M,w>[A,?”

116

l Emptiness Testing (3)

|

Final proof: Let G be a TM that decides E,.
Consider the following TM on input <M,w>
1) Construct TM P,,,

2) Run G on Py,

3) If G accepts P,,, then “reject” <M,w>

4) If G rejects Py, then “accept” <M,w>

Because:

<Puw~ UETy U = M accepts w L = <M,w>LAq,
the above TM decides A+, this TM cannot exist.
Conclusion: E;,, is not TM-decidable.

117

l Rice’s Theorem

_
Consider the generic TM-related language

T={<M>| M is a TM for which a property P holds }

Rice’s Theorem: If P is such that

1) L(M,) = L(M,) implies “<M>0T 0 = <M, >UT”"
(That is: “MUT?” depends only on L(M).)

2) There are two TMs M, and M, with
<M, >0T and <M,>0T
(The language T is non-trivial.)

Then the language T is undecidable.
118

Proof Idea Rice’s Theorem

Assume that there is a TM G that decides T...

As with the emptiness language we will take
an input <M,w> for an A, question, and turn
it into a single TM P,, such that deciding
“<Pu,~LT?" also decides “<M,w>[A,?”

119

Proving Rice cont.

TMs with empty language are either in T or not.
Assume that empty language 0T, and <Q>0T.

Proof: Given <M,w>, define the TM P,,, by:
Puw = “On input x:

1. RunMonw

2. If M rejected then “reject” x

3. If M accepted then run Q on x
By construction:
« If M on w rejects or never stops: L(P,,,)=U
e If M accepts w: L(P,,,) = L(Q)
Deciding “P,,,,[JT?” decides “<M,w>A,?”

120

Final Proof Rice’s Theorem

Let G be a TM that decides T.

The following TM would decide Aq, (input <M,w>):
1) Given M and w, make P,,, as described before
2) Give same answer as G on <P,,,>

Correctness proof:

- If M accepts w: L(P,,,) = L(Q), hence <P,,>UT
- If M does not accept w, then L(P,,,)=U: <P,,,~UT

121

Consequences of Rice’s Thm.

Almost any language property of Turing machines
IS undecidable:

Regulary, = { <M> | L(M) is a regular language }

Finite), = { <M>| L(M) is a finite language }

CFGqy = {<M> | L(M) is a CFG language }

122

Deciding Equality

_
As you would expect, the equality language

EQmy ={ <M ,M,> | M ,M, TMs, L(M;)=L(M,) }
IS undecidable.

Proof Idea: Deciding EQyy, for a fixed M,, gives
already contradictory conclusions.

Let M be a TM with L(M_)=0.

A TM that decides EQq, can also decide Eqy,
by deciding “<M;,M;> U EQ,?”

EQqy is hot even TM or co-TM recognizable... 123

Limited Success thus far

Our reductions have been very straightforward:
“A TM for this language can be transformed into
a similar TM that decides another language”

As a result, the provable undecidable languages
are very alike Aqy,, EQqy, HALT,,, €t cetera.

For languages concerning questions not about
TMs we have to use a more refined reduction.

124

Computation Histories

An accepting computation history fora TM M on a
string w consists of a sequence of configurations
C,,C,,...,C, such that the following properties hold:

1. C, is the start configuration of M on w
2. Each C,, follows properly from C;
3. C, Is an accepting configuration

Observation: Stating “<M,w>[A.,,” is equivalent
with stating “There is no accepting computation

history C,,...,C, for M on w".
125

Hilbert’s 10th Problem again

_ ..
Decision problem:

Let P(Xy,...,X,) be a polynomial in n variables
Xy, ..., %) HZM P(Xy,...,X,) = 07?

Express computation histories as sequences
(xJZ") of numbers and the statement
“X encodes an accepting history for M on w”
by a polynomial equation “Py,,(x) = 0”.

Then, deciding “<M,w>[A,,?” is equivalent
with deciding “[xX0Z": P, (X) = 0?”

126

Context-Free Languages

Remember the language
EQcrc = {<G1,G5> | G1,G, CFGs L(G))=L(G,) }?

We can prove the undecidability of this language
with the use of computation histories.

Goal: Linking Ay, With EQcrg

This will require some careful steps.

127

Initial Attempt

<M,w>[A.,, equals
“There is an accepting history x of.M on w.”

Let’s try to express this_as:
<X>[Lepg, Where'L s is Seme CF language.

Problepm? “<x>[L-5?" is decidable...

128

Second Attempt

<M,w>0A+,
equals

“There is no accepting history x of M on w.”
equals

“All histories x are non-accepting for M on w”

Let’s try to express this as:

“All <x>0L g,

where L is some CF language that contains all
descriptions of non-accepting histories of M on w

129

A Specific CFG

Given a Turing machine M and input w, we have
to make a context-free grammar G such that:

xUOG if and only if x does not encode an
accepting history of M on w

Let x encode the history C,,...,C,, then xUG if
1) C, not proper starting configuration, or

2) There is an improper C; - C;,; transition, or
3) C, is not an accepting configuration.

We can do this (CFL are closed under ‘or’).
130

Undecidability CFG Properties

With the previous outline, we can prove that
deciding the language

ALL e = {<G>| G is CFG, L(G)=2*}
enables us to decide the undecidable A,

Theorem: ALL s is undecidable

Corollary: The language is EQ.rg Undecidable.
Proof. Take G. such that L(G.)= *, and ask
“<G1,G>UEQs?”

131

Mapping Reducibility

Thus far, we used reductions informally:

If “/knowing how to solve A” implied “knowing how
to solve B”, then we had a reduction from B to A.

Sometimes we had to negate the answer to the
“CJA?” question, sometimes not. In general, it
was unspecified which transformations were
allowed around the “[JA?"-part of the reduction.

Here now comes rigor...

132

l Computable Functions
_

A function f:2* - 2* is a TM-computable function
if there is a Turing machine that on every input
wLIZ* halts with just f(w) on the tape.

All the usual computations (addition, multiplication,
sorting, minimization, etc.) are all TM-computable.

Important here is that alternations to TMs, like
“given a TM M, we can make an M’ such that...”
can also be described by computable functions
that thus have f(<M>) = <M’>,

133

l Mapping Reducible

A language A is mapping reducible to a another
language B if there is a TM-computable function
f:2* - 3* such that: wOA [= f(w) 1B

for every wiix*.

Terminology/notation:
A<, B f
e function f is the
reduction of Ato B
« also called: f
“many-one reducible”

134

A< B

-m

The language B can be more difficult than A.

Typically, the image f(A) is only a subset of B,
and f(Z*\A) a subset of Z*\B.

“Image f(A) can be the easy part of B”.

135

Decidable A <. B

If A is a decidable language, then A <, B for every

nontrivial B. (Let 1[1B and O[IB.)

Because A is decidable, there exists a TM M such that M outputs
“accept” on every XA, and “reject” on x[JA.

We can use this M for a TM-computable function f with

f(x)=10B if xUA and f(x)=00B if XA

“The function f
does all the
decision-work”

136

l Decidability obeys <., Ordering

Theorem: If A<, B and B is TM-decidable,

then A is TM-decidable.

Proof: Let M be the TM that decides B and f the
reducing function from A to B. Consider the TM:
On input w:

1) Compute f(w)

2) Run M on f(w) and give the same output.

By definition of f: if wlA then f(w)UB.
M “accepts” f(w) if wOA, and
M “rejects” f(w) if wlA.

137

l Undecidability obeys <., Order

Corollary: If A<,B and A is undecidable,

then B is undecidable as well.

Proof: Language A undecidable and B decidable
contradicts the previous theorem.

Extra: If A<,,B, then also for the complements
(ZR\A) <, (2*\B)

Proof: Let f be the reducing function of A to B
with wA [0 = f(w)B. This same computable
function also obeys “vI(Z*\A) I = f(v)(Z*\B)”
for all vOIZ*

138

Recognizability and <,

Theorem: If A<, B and B is TM-recognizable,
then A is TM-recognizable.

Proof: Let M be the TM that recognizes B and f
the reducing function from A to B. Again the TM:
On input w:

1) Compute f(w)

2) Simulate M on f(w) and give the same result.

By definition of f: wA equivalent with f(w)B.
M “accepts” f(w) if wJA, and
M “rejects” f(w)/does not halt on f(w) if wlA.

139

Unrecognizability and <,

Corollary: If A< B and A is not Turing-recognizable,
then B is not recognizable as well.

Proof: Language A not TM-recognizable and B
recognizable contradicts the previous theorem.

Extra: If A< B and A is not co-TM recognizable,
then B is not co-Turing-recognizable as well.

Proof: If A is not co-TM-recognizable, then the
complement (2*\A) is not TM recognizable.

By A<.,B we also know that (X*\A) <., (2*\B).

Previous corollary: (22*\B) not TM recognizable, hence
B not co-Turing-recognizable .

140

An Old Result

Ad nauseam: The emptiness language
Eqy={<M>|Mis aTM with L(M)=0 }
IS not Turing recognizable.
Simple proof via (A;y <, E1w):
Let f on input <M,w> give <M’> as output with:
M’: Ignore input

Run M on w

If M accepted w then “accept”

otherwise “reject”

Now: <M,w>A}, 0 = f(<M,w>) = <M’>[Eq,

141

Something is still missing ...

All languages\

_

A= { <M,w>| M is a TM that accepts w }
Ery = {<M>| MisaTM with L(M)=0 }
EQ:y = { <G,H>| G,H TMs with L(G)=L(H) }

142

l EQy is not TM Recognizable

_
Proof (by showing Ay, <., EQ+):

Let f on input <M,w> give <M,;,M,> as output with:
M,: “reject” on all inputs
M,: Ignore input

Run M on w

“accept” if M accepted w

We see that with this TM-computable f:
<M,w>0A+,, 0 = f(<M,w>) = <M ,M,> [0 EQqy

Because A., is not recognizable, so is EQqy. 143

l EQy is not co-TM Recognizable
|

Proof (by showing Ay <, EQ+w):

Let f on input <M,w> give <M,,M,> as output with:
M;: “accept” on all inputs
M,: Ignore input

Run M on w

“accept” if M accepted w

We see that with this TM-computable f:
<M,w>0Aq, O = f(<M,w>) = <M;,M,> 0 EQq,,

Because Aqy, is not co-recognizable, so is EQqy,. »

u Partial <., Ordering

—r>—-< -0 -

145

About first order logic

146

First Order Logic

_u_qm_ﬁ Order Logic (FOL)

extends propositional logic

a FOL contains
constants: a,b,c... denote objects in asome domains
variables: Xx,y,... they can assume the value of an object of the domain
the existential quantifier: [x stands for x exists ...
the universal quantifier: [x stands for each x ...
predicates: P(x,y) is a fact about x and y that may be true or false
functions: f(x) is another object determined as function of x
operators of propositional logic: =, 0,00, -

examples of sentences in FOL
Oy = (P(x,y) DQ(x,Y))

Ox0y P(xy) - Q(f(x),f(y))
147

Truth in FOL

A _uo_. sentence is true (valid) or not true (valid) with respect
to a model and an interpretation
a model is a set of objects

an interpretation specifies the meaning of constant, variables,
functions and predicates in the model

f.i. OxOy y*(x+1)=y*x+y, when the model is the set of integers and
the predicate = and functions *, are given the usual interpretation
logical validity

is a sentence is logically valid if it is true in every model and
interpretation,

m_ _H_XD< 1 UAXL\V D_UAXDQ\ [X = OAXV - lx = OO\v\

a sentence true for some model and interpretation is called satisfiable,
otherwise it is called unsatisfiable

148

Axioms, Inferences rules, theories

|
A theory contains inference rules and hypotheses

Hypotheses

are sentences that are assumed to be true in the
considered domains and interpretations

Inference rules

relates a fixed number sentence (premises) to a
sentence (conclusion)

are used to prove other sentences (theorems)!!

149

Completeness and soundness

For a theory with hypotheses 4 and rules R let us denote
H|l=A
if the sentence A is true for all the models and interpretations where His
true
—I_ _I\N L
if the sentence A can be deduced from A by the rules R

A theory is
sound, if H |-, AimpliesH |= A
complete, if H |=A implies H |-, A

Of course,
soundness is essential
completeness is very desired!!!

150

Valid, unsatisfiable, satisfiable,
sentences

When a theory is sound

Satisfiable sentences

Valid sentences

Theorems
151

Logical axioms

Consider the general FOL where only the logical symbols are
defined

= only one rule exists,
if A B and A are true, then deduce B
= only the (logical) axioms are considered, where t,r,s are terms
=« (Ox P(x)) - P(t)
« P(t) - (Ix P(x))
= (Ox (W - P(X)) - (W - Ox P(x))
= (Ox(P(X) - W)) - (OxP(x) - W)
« t - (r-s), tr - t,.. and other axioms of propositional logic
GoOdel completeness theorem states that

The above FOL theory is complete and sound!! 152

Valid, unsatisfiable, satisfiable,
sentences in general FOL

When a theory is sound and complete

Satisfiable sentences

Valid sentences

Theorems
153

FOL and calculability

Let us consider the sets
= the theorems T={A| |- A} of the theory
= the valid sentences V={A| |= A} of the theory

The following holds
= T is recursively enumerable
= since, T=V, V is recursively enumerable, too

= We will see that T, V are not decidable

What does it happen when the theory has also non-logical hypothesis?

154

The theory of natural numbers is
undecidable

Let us consider the theory of natural numbers with the operators + and *

Ug Do Ox,y [p>g & (X,y>1 — Xxyzp) |

[a,b,c,n [(a,b,c>0 & a"+b"=c") - n<2]

Ug Do Ox,y [p>g & (X,y>1 — (Xy#p & Xy#p+2)) |

Let Th(N,+,*) denote the set of all valid sentences in such a theory

e Th(N,+,*) is undecidable!!

Notice that we have not defined a set of hypotheses and derivations

rules, so we can simply assume that the hypotheses are just all the
true sentences in natural number mathematics

155

Proof

m_xmﬁo:”

For each TM M, it is possible (not described here) to define a
sentence [X Ry, in the FOL of the natural numbers with +
and *, that is true if x, which is free in R, is a correct
accepting history of w on M.

Thus, let M, be a machine that decides Th(N,+,*) . Then, we
can define a TM machine M, that takes in input <M,w>,
constructs [X Ry, and call M, on it. M; decides Aqy, which is

absurd.
156

GoOdel’s incompleteness theorem

It Is even worse:
natural number theory cannot be axiomatized

Gddel's incompleteness theorem

* No sound and complete set of axioms for the theory of natural
number is recursively enumerable

157

Proof

|
Sketch:
Let us suppose, by reduction to absurd reasoning, that there
is a recursively enumerable set of axioms for integer number
theory.

Then the valid sentences of the theory are recursively
enumerable. Since, the for each sentence A, either Aor - A
is valid, then valid sentences are also decidable.

This fact is absurd due to the undecidability of Th(N,+,*).
158

l Validity is undecidable

_Cm_so a similar approach as the one used for natural
number, it is possible to prove that

The set of valid sentences of basic FOL is undecidable

Notice the difference with natural number theory

In natural number theory, for any sentence A, either A
or = A is true, but there is no set of axioms that allow
us to decide which one holds

In general FOL, if A is valid (a theorem) A, we can
decide whether either A or - A holds, but we cannot

decide whether a sentence is valid!!
159

Particular results

Special results may hold for special theories, f.i
Th(N,+) is a TM-decidable set
Th(N,+,%) is a not a TM-recognizable set
Th(R,+,%) is TM-decidable
monadic predicate logic (predicates with only one
parameter) is decidable
validity of bounded sentences (f.i. ix(x<3)...) is decidable

160

Minimum description length

161

Measuring Information

Standard information theory considers each n bit-
string in {0,1}" equal.

However, we feel a difference between the string
“0101010101010101010101010101010101"

and the string (of equal length)
“0101110101001010001110001100011011".

We consider the first string more ‘regular’ than
the second one.

162

Regularity

We can give a short description of “0101010101
010101010101010101010101” by “17 times 01".

For the other “01011101010010100011100011
00011011” this seems more problematic.

This suggests:

A regular string is a string that has a short
description; an irregular one has no such summary.

163

‘Turing Describable’

Key idea: We allow a Turing machine M with
input y as a description of a string x if the output
of M on y equals x.

An x will have many different descriptions (M,y).
We consider the size of the shortest description
as an indication of the intrinsic complexity of x.

164

An Encoding for <M,y>

_
The description of the TM M and its input y is
going to be one long bit-string:

1100 - - 10101 01

J o J

Turing BMn:_:m M _:_omﬁ y

How do we know where <M> stops and <y> starts?

We will use a self-delimiting code for <M>:
two bits “00” for ‘zero’,
two bits “11” for ‘one’, and

“01” for ‘end of string’.
165

Description Length of <M,y>

For the encoding of M and x we concatenate the
self-delimiting/double bit description of M with y.

Hence from now on: <M,y> = <M>y.

For the length of <M,y> this implies:
[<M,y>| = [<M>] + |

Note that the y[1{0,1}* is encoded trivially.

166

Descriptive Complexity of x

(Fix a universal Turing machine U.)

The descriptive complexity K(x) of a string x is
the length |d(x)| of its minimal description:

K(x) = B_i (M)y| : UonMandy outputs xv

<M>y

Also known as: algorithmic complexity, or

Kolmogorov (Solomonoff-Chaitin) complexity. o

Description length and information
theory

Let us find a suitable coding to compress the information ...
Messages has to be sent through a communication channel.

The messages are sequences of symbols in the alphabet mnﬁmt:;mzv:

Description length theory point of view
To codify a message we send
a description of the alphabet S,
it has a fix cost Cg
the index of each element of the alphabet
each index can be codified using log(|S|) bits
Hence K(x) < ¢ +m log(|S]),
168

Description length and information
theory

Shannon source coding theorem states
= that the optimal code satisfies

H(S) < EB(S) < H(S) +1

where H(S) is the entropy of alphabet S and EB(S) is the average
number of bits used to codify the alphabet

= thus the average minimum description length EK(x) of a message is
EK(x) <m (H(S)+1)

169

Description length and model
selection

We want to define a model that explains a set of observations Xi,...,X,
and Y,,..., Y, of a system. If several models are available, which one has
to be selected?

The goals

W the model should be able to explain well the observations
¥ the model should be simple

Get the model such that
B <M> is minimum
m M(X)=Y 170

l Occam’s Razor

_
“It i1s vain to do with more what
can be done with fewer.”

William of Ockham (1290-1349)

o LY,

Alternatively:
“Entities should not be

171

Description length and model
l selection

| y
An observation X, Y of a system can be defined
using a model M

the difference between the predicted output
and the actual output D=Y-M(X)

The goals

the model should be able to explain well the
observations

the model should be simple

Which model is better ?

Get the model such that
<M>D is minimum

172

Description length and learning
_ ‘

In machine learning
¢ the generalization is the capability of a
trained model to predict the behavior of
a system on unseen patterns
e Usually,
e the simpler a model is, the better
generalization can be achieved Which model is better ?
e the simpler a model is, a lower
performance is achieved on training
set
e The description length may be adopted
as a tool for improving generalization
performance

v

test set pattern
train set pattern

173

Example: description length and
neural networks

Assumption

A source communicates to a receiver the model of a system.
Source and receiver know the input data X;,...,X

The source sends
a neural network M

its encoding <M> requires to encode each weight by a
binary number

the difference between the predicted and the actual output
for each input data

the difference D it is encoded by a binary number

n*

174

Example: description length and
neural networks

The minimum description length theory suggests to minimize <M>D
(an intuitive sketch)
To minimize <M>

The weights of the neural network must be kept small, in order to
minimize the precision required for its representation

To minimize D

the expected difference between the predicted output and the actual
output must be kept small, in order to minimize the precision
required for its representation

Thus we have to minimize

QM_O% M Q%%M_ogé

175

How Universal is K?

Recall: (Fix a universal Turing machine U.)

K(x) = 3_3* xzvi : UonMand y outputs xv

<M>y

Problem: The function K depends on the universal
U that is used: we should say K, instead of K...

Maybe that for another TM V, the complexity
measure K,, is much smaller than K ?

176

Invariance Theorem

_
Theorem: Let U be a universal TM, then

for any other description method V, we have
Ku(X) < Ky(x) + ¢ for all strings x.

Note that the constant ¢ depends on V and U,
but not on Xx.

Proof: Because U is universal, we can give a
finite description to U how it should simulate V.
Let this description be of size c.

177

An Obvious First Result

Theorem: There exists a constant c, such
that K(x) < |x| + c, for every x. (“The complexity of
a string can never be much bigger than its length.”)

Proof: Let M be the TM that simply outputs its
input string y: M(y)=y.

Then <M>x is a description of x, and hence
K(X) < |<M>| + |x]. Let c=|<M>|.

(Here we benefit from our way of encoding (M,y).
178

Data Compression

Theorem: There is a constant ¢ such that
K(xx) < K(x) + c, for every string X.

Proof: Take the TM M that given input <N>x:
1) Calculate the output s of N on X
2) Output ss

Let d(x) be the minimum description <Q>r of X,
then <M>d(x) will give a description of xx.
Hence, K(xx) < [<M>] + |d(X)| = K(X) + c.

179

Concatenation

You would expect that for all strings x and v:
K(xy) < K(x) + K(y) + c, for some c.
However, this is not true.

The problem lies —again— in the separation
between d(x) and d(y).

Instead, we have a constant ¢ such that:

K(xy) = K(x) + K(y) + 2log(K(x)) + c,
for all strings x and y.

180

l Log Cost of Concatenation

Theorem: There is a ¢ such that
K(xy) < K(x) + K(y) + 2log(K(x)) + c, for all x,y.

Proof: Let m be the logarithm of |d(x)|, then the
string “1™0 <|d(X)|> d(x)” gives a self-delimiting
description of x.

(We need 2m bits to indicate the length of d(x).)
Hence the input “1™0 <|d(x)|> d(x) d(y)” gives an
unambiguous description of xy.

Alternatively, we could double the representation of x, obtaining

a less tight bound K(xy) < 2K(x) + K(y) + ¢

181

Incompressibility

Theorem: For every n there exists at least
one incompressible string x[{0,1}" with K(x)=n.

Proof:

— There are 2" different strings x in {0,1}".

— There is one description of length 0O, two
descriptions of length 1,..., and 2"1 descriptions
of length n—1.

In total: 2"-1 descriptions of length smaller than n.
Hence, there has to be an x[{0,1}" that has a
minimal description of at least n bits.

182

Incompressibility: more geneally

Theorem: For every n there exists at least
2n-2n-¢+l +1 strings that are incompressible by c, i.e. such
that satisfy k(x)>|x|-c

Proof: As in the previous theorem, there is only 2n-¢+1 -1
descriptions (strings) having length smaller or equal to n-c

183

Counting Primes less than n

Q: How many primes are there less than n?
Let py,...,p, be the m primes < n.
We know that we can describe n by:

_ e e en
n = p _HUNN..._uB

Hence <e,,...,e,> gives a description of n.
For each | we have: ;< log(n).Thus <e,,...,e,,>
requires less than m-log(log(n)) bits.
By, incompressibility, there are n with K(n) = log(n).

Conclusion: m = log(n) / log(log(n)) for those n.

184

More Carefully Counting of Primes

n = ppy--po Hence <ey,....e,> gives
a description of N. For each | we have: g; < log(n).

There is an encoding y,, of e,,...,e, with |y,| < m-log(log(n)).
The total description <M>y_ requires no more than

c + m-log(log(n)) bits.

For n with K(n) = log(n), we thus have the bound: log(n) <
m-log(log(n)) + ¢, which implies

m = log(n)/log(log(n)) — c/log(log(n))
for arbitrary big n.

185

(Un)computability of K

To which extent can we know the value K(x)?
K(X) < n can be proven by a specific example
<M>y (with total length < n) that produces x.
For K(x) = n we would have to prove that all
<M>y (with length < n) do not produce x...

K can only be approximated ‘from above’.

True statements like “K(x) < n” are recognizable,
but not TM-decidable.

186

l Richard-Berry Paradox
_

“The least number that cannot be
defined in fewer than twenty words.”

By formalizing this paradox we will see that the
problem lies in recognizing that a number
cannot be described in fewer than 20 words.

(There is no problem with formalizing “defined”.)

187

j Richard-Berry Formalized
_

Richard-Berry Paradox Theorem:
The set C ={<x,n>| K(x) = n }is not decidable.

Proof by contradiction: Assume C decidable.
Consider the following TM M (on input n):
1) Take s=¢
2) Decide <s,n> [1 C?
3) If answer “no”,

then increase s lexicographically; go to 2)
4) If answer “yes”, then print s and halt.

The descriptive length of <M>n is cy,+log(n)...
188

Richard-Berry Formalized

... The descriptive length of <M>n is c,,+log(n).
Take n big enough such that n > c,,+log(n).
(The original paradox has n equal “20 words”.)

Then the length of <M>n is less than n, but it
outputs/describes a string s with K(s) = n.
Contradiction.

The set { <x,n> | K(x) = n }is not decidable.
(But it is co-TM recognizable.)

189

Compression and Godel (1)

The impossibility of calculating K gives a simple
way of rephrasing Gddel's incompleteness thm.

Let A be an attempt to find the complete set of
axioms and derivation rules for Th(N,+,x%).

There exists an n, which is a constant that depends
only on the size of A in bits, such that...

... with A we cannot prove any of the true
statements “K(x) > n,”".

190

Compression and Godel (2)

For any string x, the statement “K(x) > n” can be
expressed as a potential element of Th(N,+,x%).

(We can formalize “K(x) > n” in the language of
the theory of natural numbers, +, and x.)

Consider the following program that uses A and n:
1) Enumerate a statements that follows from A
2) If this statement is of the form “K(x) > n”,
then print(x) and halt
3) Otherwise: generate next statement and go to 2)

191

Compression and Godel (3)

1) Enumerate a statements that follows from A
2) If this statement is of the form “K(x) > n”,
then print(x) and stop
3) Otherwise: generate next statement and go to 2)

The above program can be expressed with
less than 2|A| + 2log(n) + c bits.
(The constant ¢ does not depend on A or n.)

Also, the program outputs a string x with K(x)>n.

Contradiction if n > 2|A] + 2log(n) + c.

192

| Compression and Godel (4)

summary:

Consider a system of axioms/derivations A.
Take an n, with n, > 2|A| + 2log(n,) + C.
This program of length 2|A| + 2log(n,) + c:

1) Enumerate a statements that follows from A
2) If this statement is of the form “K(x) > n,”,
then print(x) and stop
3) Otherwise: generate next statement and go to 2)

would print an x with K(x) > 2|A| + 2log(n,) + c.

Contradiction: A cannot prove K(x) > n,.

193

l Compression and Godel (5)

Summary:

Consider a system of axioms/derivations A.
Take an n, with n, > 2|A| + 2log(n,) + c.

With A we cannot prove “K(x) > n,” for any x.

This is a very strong result:
 For all but 2n++1-1 strings, “K(x) > n,” is true.
» The statement “K(x) > n,” does not use

the content of A at all, only the size |A|.

“You can’t prove a theorem of one kilogram
with only one gram of axioms.” 194

Time complexity

195

l Time Complexity
_

Let M be a Turing machine that halts on all inputs.

Definition: The running time or time complexity
of M is the function f:N - N, defined by

f (n) = max(no.of timestepsf M on x)

X|=n

Note: Worst case and size of the input x in bits.

e "f(n) is the running time of M”
e "M s an f(n) time Turing machine”.

196

Time Complexity Classes

Definition: For the function t:N - N,
the time complexity class TIME(t(n)) is the set of decision

problems:

TIME(t(n)) = { L | there is a TM that decides
the language L in time O(t(n)) }

197

The Polynomial Time Class

|
Definition: The class of languages that can

be decided by a single tape TM in polynomial
time is denoted by P:

P = [JTIME(")

k=1,2,...

The problems in P are considered efficiently solvable.

198

Examples

Problems in P
given two nodes of a graph, is there path that connect them?

PATH = ?O. n,v)|thereisapathfromn tovin Ov
given two integer numbers, are they relatively prime?

RELPRIME={(a,b)|aandbarerelativelyprime}

given a string and a predefined context free language, does the
string belongs to the language?

Aceg = { <G,w>| G is a CFG that generates w }

199

The Complement Polynomial
Time Class

|
Definition: The class coP contains the languages whose
complement can be decided in polynomial time

coP = {A|ADP}

Theorem: The complement polynomial class is equal to
the polynomial class

coP = P

200

Proof

Proof

Let M be the DTM that decide on A. Build M2 such that
M is run on the input w
If M accepts, then reject
If M rejects, then accept

201

Strong Church-Turing Thesis

All reasonable computational models are polynomial-
time/space equivalent:

e It is possible to simulate one model by another
model with only polynomial time/space overhead.

The answer to the question “"AP?” does not
depend on the model.

202

Relationships between Turing
machines

The computation time on different Turing machines differs for only
a polynomial time term

Theorem: Every t(n) time multitape Turing machine has an
equivalent O(t?(n)) time single-tape Turing Machine

Theorem: Every t(n) time single tape Turing machine has an
equivalent O(t(n)) RAM program

Theorem: Every t(n) time RAM program has an
equivalent O(t3(n)) single tape Turing machine

203

Proving that a multi-tape TM is
equivalent to a single tape TM

Let M=(Q,Z,I",0,00,accept:Ureject) PE @ k-tape TM.
Construct 1-tape M’ with expanded " = ' CO{#}

Represent M-configuration

Uga;Vy, Ux0jazVva, ... UGV
by M’ configuration
O;# Uy@ Vy # U@,V # ... # Uiy Ve

(The tapes are seperated by #, the head
positions are marked by underlined letters.)

204

Proving that a multi-tape TM is

l equivalent to a single tape TM
_

I I I I
SRR AV

&
)

I I I I
ce Uy 1A, TV,

-

205

Proving that a multi-tape TM is

l equivalent to a single tape TM
_
On input w=w,...w,, the TM M’ does the following:
1. Prepare initial string: #w,...w #_#---# # -
2. Read the underlined input letters O Ik
3. Simulate M by updating the input and the
underlining of the head-positions.
4. Repeat 2-3 until M has reached a halting state
5. Halt accordingly.

PS: If the update requires overwriting a # symbol,
then shift the part # ---_ one position to the right.

206

Proving that a multi-tape TM is
equivalent to a single tape TM

The simulation of an operation of the multi-tape
operation can cost at most m, where m is the
dimension of the tape

m <t(n) holds, since the multi-tape TM cannot write
more than a symbol at every operation

thus, the number of operation runs by the single tape
TM is smaller than O(m t(n)) < O(t2(n))

207

Unreasonable Models?

Physical unrealistic requirements for the proper
functioning of the machine.

e Machines using elementary components with infinite
precision

e Unbounded parallel computing

e Machines that requires exponential space and energy.
e Time-travel computing

208

Verifiers and NP

Languages in P have poly-time deciders.
Languages in NP have poly-time ‘verifiers’.

Definition: A verifier for a language A is a
program V such that

A = {<w> | V accepts <w,c> for some c}
The string c is the certificate that proves wlA.
Remark

the length of c is polynomial w.r.t. w
209

Nondeterministic Polynomial Time

Definition: NP is the class of languages
that have polynomial time verifiers.

The following is another equivalent definition

Definition: A language L is in NP if and only if
L can be decided by a poly-time by a nondeterministic TM.

The problems in NP are considered difficult to be solved.
210

Proof:
the two definitions are equivalent

|
Proof
Let ACNP have an O(nk) time verifier V.
A polynomial time NTM can guess the O(nk) certificate ¢
that V has to use for xOA and simulate V on <x,c>.

Let N be the O(nk) time nondeter. decider for B.
The O(nk) guesses of N define a certificate c.
A polytime deterministic V can simulate N on <x,c>

and verify “x[B" for every such x.
211

A problem in NP:
Boolean Formula Satisfiability (SAT)
_

A Boolean variable x can be TRUE or FALSE, which is also denoted
by “1” or “0".

Standard Boolean operations are AND (x[ly), OR (xLly), and NOT
(-x or also x).

Typical Boolean formula: @(x,y) = (-xOy) O(x[hy). This @is
satisfiable (by the assignments x=y=TRUE and x=y=FALSE).

SAT ={<@> | @pis a satisfiable Boolean formula}

SAT is in NP:
a certificate is a assignment of the variables that satisfies the
formula.

the certificate length is proportional to the number of variables 212

Examples of problems in NP

|
Example

does a given graph contains a clique?

CLIQUE ={(G,k)| G containsak - clique
the certificate is a coding of the clique nodes

is there a subset of integers in a given set that sum
to a given number?

SUBSET-SUM ={(S,t)|S={x,,...x}, it existsY 0 Ssuch that =>_ x
iay

the certificate is a coding of the subset

213

Winning $1,000,000

The Clay Mathematics Institute named seven open
problems in mathematics the Millennium Problems

Anyone who solves any of these problems will
receive $1,000,000

Proving whether or not P equals NP is one of
these problems

214

About P=NP

It is believed that PZNP

Several theorems in complexity theory are in the
form of
if P£NP then ...

There is an incredibly large number of open problems
whose solution would allow to decide about P=NP

Important cryptography algorithms are based on
PzNP

215

co-NP

_
Definition: The class coNP contains the languages whose complement can
be decided in polynomial time on a nhon deterministic TM

coNP = {A|ALNP}

Example

Tautology is in coNP. Tautology equals complement of SAT. The
certificate is given by an assignment of the variables for which the
formula is false.

TAUTOLOG¥{A |A isatautology(lt is truefor any assignameh

Notice that...
If a problem is in NP, then its complement is in coNP and vice versa...

216

co-NP, NP,...

Remark

differently from P, it is unknown whether NP=coNP, actually it
is supposed NP#coNP

... we will come back later on this issue

NPncoNP

217

co-NP, NP,...

Remark

integer factorization (decision problem) is known to be both in NP and
coNP, but no polynomial algorithm is available

INT - _n>0._.nr:__o In hasa factorsmaller htan &

Proof
INT-FACT is in coNP

a certificate (that an integer has factors smaller than k) is given by a
factor

INT_FACT is in NP
A polynomial certificate for prime numbers was produced by Pratt in 1975

218

l Pratt certificate (sketch)
_

Fermat's little theorem converse
n is prime if and only if there exist r
r is prime to n
r1=1 (mod n)
there is no integer e<n-1 such that re= 1 (mod n)

(actually, it is sufficient to prove this for every e=(n-1)/p, where p; is
prime factor of n-1

Notice that

r by itself is not a good certificate, because checking 3 requires to

compute the factors of n-1, which cannot be done in polynomial
time!!

A certificate is recursively defined: it contains
r

219
and the factors of n-1, along with their certificates

l Pratt certificate: an example

uoum_ is prime because

It)
37 is prime becau
23=1 mod 37

236/2 21 236/3 1 mod 37
2 is prime Agm_qmi@/
3 is prime because

his reasoning can be memorized
= 22=1 ABOQ wv 7

and provides the certificate

220

Polynomial Time Reducible

|
Definition A language A is polynomial time reducible to a
another language B if there is a polynomial time
computable function f:>* -, >* such that:
wlA [0 = f(w)LB for every wix*,

Terminology/notation: f
A<, B

e f is the polynomial
time reduction of A to B f

221

Poly-Time Functions

Definition A function f:>* - >* is a poly-time-computable
function if there is a TM that on every input wOx*
halts after poly(|w|) steps with f(w) on the tape.

All the usual computations (addition, multiplication,
sorting, minimization, etc.) are all poly-time.

Important here is that object transformations,
like “Given a formula @, make a graph G,” can
almost always be done in poly-time.

222

A<, B

The language B can be more difficult than A.

Typically, the image f(A) is only a subset of B,
and f(Z*\A) a subset of Z*\B.

“Image f(A) can be the easy part of B”. 223

Polytime A <, B

Theorem If Ais in P, then A <, B for every nontrivial B.

Proof
Since A is in P, there exists a TM M such that M outputs “accept”

on every x[JA, and “reject” on x[JA in polynomial time.
We can use this M for a TM-computable function f with

f(x)=10B if xOA and f(x)=00B if xOA

"The function f
aoes all the work”

224

P obeys <, Ordering

Theorem:

If A<;B and Bis in P, then A is in P as well.
Proof: Let M be the poly-time TM for B and f the
reducing function from A to B. Consider the TM:
On input w:

1) Compute f(w)

2) Run M on f(w) and give the same output.

By definition of f: wA if and only if f(w)B.
M “accepts” f(w) in poly-time if wOA, and
M “rejects” f(w) in poly-time if wA.

225

NP-Completeness

|
Definition: A language B is NP-complete if

e Bisin NP, and
e For every language AUNP we have A<B.

NP-complete problems are the most difficult
problems in NP...

If we omit requirement 1 we define the set NP-hard.

Definition: A language B is NP-hard if
1. for every language ACINP we have A<.B.

226

Why is NP-Completeness important?

|
If an efficient solution will be found for a NP-complete

language, then an efficient solution will be found for each
language in NP

Theorem If there is an NP-complete problem B that
can be decided in deterministic polynomial time, then
for all languages ACJNP we also have ACIP.

The question P=NP can be studied by analyzing just any
NP-complete language

Theorem If B is NP-complete, then BOP if an only if P=NP

227

Cook-Levin Theorem

Cook-Levin Theorem proves that there a NP-complete
language exists

Theorem: SAT is NP-complete

228

l Proof Outline

|
Let A be a language in NP.

For every w, we want a (CNF) formula @, such
that wUA [= @,SAT, with a poly-time function
that calculates @, from w.

Let N be the nondeterministic NP that accepts A.
Key idea:
wOA [0 = [accepting path of N on w

0= OX;... X, [@,(X1-.-X,) = TRUE]

229

l More Proof Outline

Specifically we will establish the chain:
WA [0 = [accepting path of N on w
0=

There exists a sequence C,,...,C; of
configurations with:

- C, the start configuration of N on w

- (C;,Cj.1) @ proper N transition for every |
- C; an accepting configuration

0= X;... X, [@(X1--.Xy) = TRUE]

230

l Accepting Path of N on w

OHH_EﬁH <<N_ llmml #
C,=| # |- |- o b o e #
. | —
IIIIIIIIIIIIIIIIII N N N [RSN [
_ _ I,
o | | .
|||||||||||||||||| R v S DU
| | | |
| | | |
|||||||||||||||||| e e e Sty Sty
| | | |
| | | |
IIIIIIIIIIIIIIIIII B I et I I
I I | |
||||||||||||||||||| e 1 I DU
| | | |
o | | | o
IIIIIIIIIIIIIIIIII 1
| | | |
| | | |
C.=| #) _ da _ BRTP #
CELL WINDOW i
l Size of Path of N on w
|
N is a poly-time nondeterministic TM:
The (accepting) path of N on w is limited by O(n¥).
The sequence of configurations can described by
a tableau nkxnk cells: # Gy Wy [Wy) Wo | et |
ol | e e e 1
Q- X S Y A
describes T I
this tableau... N U S R S S N U S
; e |
232

How @ Describes the Tableau

¥ The m Boolean variables in @, (X;...X,) have
to describe:
- that each cell is proper
- that C, is the start configuration of N on w
- that the transitions (C;,C;,,) are proper
- that C; is an accepting configuration

O“_.% Go | Wi <<Nm..ms\: Im .ml #
I I I I
Om # e d e o #
N B DS
S b :
N T RN O S
| [| | .
| | | | °
P R e e LI B
[| , , .
\\\\\\\\\\\\\\\\\ e e | AN DR N
| | | | .
ol | | . :
\\\\\\\\\\\\\\\\\ R AR SRS I R PR
. L TR
I I I I Nww
0._. #] N | #

How ¢ Describes the Cells

| The TM N has state set Q and tape alphabet I'.

The content of a cell is in the set QUI LI{#}.

Define the Boolean variables according to:

xuqxcm__nnm__e;.vum
(1) | FALSE otherwise

In total there are
nkx nkx |QOr O{#}|
Boolean x-variables.

This is O(n%¥) polynomial in n.
234

@ for Proper Cells

Not all x-assignments make sense.

We require that each cell(i,j) has a one description.
For every 1<i,j<nk there should be only one
variable X s set TRUE.

The cell symbols s range from 1 to ¢ = |QUI T{#}|.
Hence we define with the ONE-function:

Qe = 3 ON mAbe ree x?_.bv

1,)=1

235

@+ fOr the Start Configuration

The starting state of N is q,, and the input
string IS Wy, ...,W,,.

(The rest is filled with _-spaces and marked on
the left and right by #-symbols.)

Hence:

€m._nmq.ﬂ — XA”_L“_.\.%.V _H_XA”_{N\QOV _H_

X1,3wp) U UX g nazw,y U

XAH~3+w~Iv _H__ux Dx

A”_;:_A I”_;Iv A”_{:_A Lﬂ.v

236

@ccept for Accepting

After the TM N has entered the accepting state

Qaccept: It StAYS IN this state.

We only have to check if the bottom row contains

the accepting state:

D_A
= X .
Gmnnmbﬂ C Asx menamcﬁv
.._”

237
@ove TOr Proper Transitions
The last requirement is that the sequence of
configurations C,,C,,...,C; are allowed by N.
G [[| [#
We can check this by locally SREERERL
checking all 2x3 windows. T
There are (n"k-1)x(n-2) T
of such windows: [l | I S S N
......... T E
n-1 nk-2
Grove =[] [0 3) window legal
238

i=1 j=1

Legal Windows

If there is no TM head, the tape should remain
unchanged:

for all a,b,cIlr O{#}.

For the transitions d(q,,a) = {(g,,b,R),(qs,c,L)}:

239

More Legal Windows

The head can move in and out the window:

et cetera.

The tape and the TM remain stationary once
an accepting state
has been reached:

240

Some Illegal Windows

For various reasons the following windows
indicate a mistake in the configuration sequence:

Most important, this window:
is illegal if (gq,c,R) U 8(q,,b)

241

(i,j) Window Legal...

Let L O (QUI O{#})® be the set of legal windows.
Then “(i,j) window legal’ can be expressed by

C Ax (i,3,51) _H_ XQL.+U_4va _H_ o _H_ XQ+”_.L.+N~mmv v

(S ,+sSg)L

With these sub-formulas we can express

k-1 nk-2

Grove = (] ()i,) window legal
=1 j=1

242

l The Complete @, Formula

" Together these four requirements give:

RE = h_“nm__ L n_“mﬂm_.ﬁ N h_“Eo<m L A_“mnnmcﬂ

By construction, @, is satisfiable if and only if
there is an accepting nondeterministic path
of N on input w:

wUA U = @, USAT

We have to check that w- @, is poly-time...

243

l Polytime Reduction Check 1
_

Fixed TM N with time complexity O(nk)
on input wy,...,w, of length n.

There are O(n?) Boolean variables x;) in @,.

Last issue: Can we describe @, in poly(n) time?

D_A
Peen = DOZmAxA:b:.:xeéev O(n%) time.

i,j=1

244

l Polytime Reduction Check 2

|
Can we describe @in poly(n) time?

Ostart = X(1,1,#) UX(1,2,q,) U
Xt,3,w) U UX g naawyy U

X143,y Lo LX LIX

AHLJ_A I“_;Iv A“_;D_A \.%.v

... requires O(nk) time.

245

l Polytime Reduction Check 3
_

Can we describe @in poly(n) time?

n“-1 n*-2

Qrove =[] [(i) window legal
=1 j=1

... requires O(n2X) time.

k

n
= lexi K).
Paccept C X (0% i Guccent) complexity O(m)
.H“

246

Polytime Reduction Check 4

Given wy,...,w,, the construction of
@.E = h_Unm__ L Gmﬂm; L n_hao<m L A_“mnnm_u_“

requires O(n%X) time and space: poly(n).

247

Examples

Some NP-complete problems
= Is a given graph a k-clique?

CLIQUE ={(G,k)| G isak - cliqug
= Does the graph contains a Hamiltonian path?

HAMILTON ={G | G containsaHamiltonian path}

= is there a subset of integers in a given set that sum
to a given number?

SUBSEF mc_/_n*m_c_mny:..v&. it existsr 0 Ssuch H:mﬂMxW
iy -

Examples
_

Some NP-complete problems
Has a given graph a cut of size k?

MAX - CUT ={(G, k)| G hascutof sizek or more}

Does an assignment of colors to the nodes of a graph
exist such that no two adjacent nodes have the same

colors?
3COLORS={G | G canbecoloredwith 3colorg
has a given graph a k-node vertex cover ?

VERTEX COVER{(G k) |G hask- vertexcove}

249

More about NP-complete

Remark
NP-complete defines the most difficult problems in NP:

in fact any problem in NP can be reduced to NP-complete

NP-hard problems may be even more difficult problem, however
NP-hard contains problems outside NP

e]

NP complete

difficulty
NP

P

250

More about NP-complete

Remark
It is unknown whether NP=coNP, but
NP=P implies NP=coNP (by P=coP)

and if NP-complete N coNP #0 (or NP N coNP-complete #0), then NP=coNP

Proof

Assume there is a problem A is in NP-completen coNP.

Since Al NP-complete, then for any problem BONP, we have B<, A. Since,
ACOcoNP, there is polynomial certificate for the complement of A. As a
consequence, there is a polynomial certificate for B. Thus, NPCJcoNP.

Moreover, let COcoNP and consider its complement C, which fulfills

C ONP. By, NPOcoNP, it follows C [lcoNP and, as a consequence, CLNP.
Thus, coNPCINP

251

More about NP-complete

Remark NP PncoNP
the possible cases are complete
P=NP and NP=coNP
PZNP and NP=coNP
P#ZNP and NP#coNP (the most believed)

problems in NP n coNP are believed to be easier than NP-complete
and coNP-complete

f.i. integer factorization
it is unknown whether P= NP n coNP

252

Are there problems whose complexity
is in the middle between P and NP?

_
NP-Intermediate=NP-P

Ladner's Theorem
If P£NP, then there are problems that do not belong both to
P nor to NP-Complete

However, Ladner's Theorem does not provide a natural
example of a NP-intermediate problem. Possible candidates
graph isomorphism
factoring
discrete logarithm

253

A candidate for NP-intermediate

Graph isomorphism is a probable candidate for NP-intermediate

G,,G, are isomorphs if there exist a bijection f from the nodes of
G, to those of G, such that an edge (u,v) exists in G, if and only
if edge (f(v),f(u)) exists in G,.

Remarks
Graph isomorphism is in NP: the certificate is any coding of f.
No polynomial algorithm is known
No reduction of a NP-complete problem is known

254

Graph isomorphism

_
the class of problems with a polynomial reduction to graph
isomorphism (GI)
contains
a subclass of maximun clique
finite automata isomorphism
regular graph isomorphism
directed acyclic graph isomorphism
we will return on this issue later....

255

Language isomorphism

|
Polynomially isomorphic languages (L,,L,0>*)
there is a bijection h:>* - > *
wlL, if and only if h(w) OL,
both h and h1 are polynomial time computable

Remark
All known NP-complete languages are polynomially
isomorphic!!!

... but the isomorphism among NP-complete languages
has not been proved formally
256

Sparse languages

Definition A language is sparse if the number of strings of size n is upper-
bounded by a polynomial in n

Definition A language is unary if it contains only one symbol, i.e. L 0{0}*

Notice that
NP-complete problems are not sparse languages

The sparseness could provide another measure of the complexity of a
decision problem:

perhaps simple languages with “few” strings can be easily recognized.
Notice, however, that unary languages can be even not computable

f.i., f(O")= accept if and only if <n> is the coding of a ,n:m&,en_.m__u_mN -
boolean formula

Sparse languages

Sparse languages are important because

Theorem if PZNP, then SPARSECINP-intermediate

Theorem if P=NP, then any problem in NP is reducible to a sparse
language

Theorem There is a sparse language in NP-intermediate if and only NP-
intermediate contains a unary language

Thus we can study NP=P, by studying unary languages!!

258

Functions problems

As far, we studied decision problems, what about function
problems?

Let A be a language and R a relation such that
A={w]| y exists s.t. R(w,y)}

Definition
The function problem corresponding to A is
“given w, find y such that R(w,y)"”

Definition
FNP and FP are the classes of function problems computing in
polynomial time on a DTM and a TM, respectively. 259

Functions problems

Remarks

The complexity of a function problem is equal or larger than the
complexity of the corresponding decision problem

the decision problem can be solved using the function problem
we can define the concept of a polynomial reducibility also for the
function problems
we can prove that FSAT is FNP-complete
we can prove that FSAT can be solved in polynomial time if and
only if SAT can

FSAT is reducible to SAT

Theorem

FP=FNP if and only if P=NP 260

FSAT is polynomially reducible to SAT

_
FSAT= "Given a Boolean formula @, find an assignment that satisfy ®”

Proof
We give an algorithm for FSAT
check whether @ is satisfiable: if it is not return no
else define ®,= ®[x,=true], ®,= P[x,=false], where x, is a variable
check whether ®,, ®, are satisfiable (one of them must be)
set ®= ®,, where P, is satisfiable
repeat 2-4 for all the variables

261

Space complexity

262

Space Complexity Classes

The space requirements of a computation are another important
resource that we should be concerned about.

Definition: Let f:N - N be a function. The space complexity classes :

SPACE(f(n)) = { L | there is a TM that decides the
language L in space O(f(n)) }

NSPACE(f(n)) = { L | there is a nondeterministic
TM that decides the
language L in space O(f(n)) }

263

Savitch’s Theorem

Theorem: For any function f:N - N with f(n)= log n, the inclusion
NSPACE(f(n)) O SPACE((f(n))?)

holds.

Nondeterminism does not give you much extra for space
complexity classes.

Space behaves much nicer than ‘time’.

Space, unlike time, can be reused.

264

Proof of Savitch’s Theorem

_
We could simulate the NTM by a TM (the TM emulate each brunch), but

emulating a NTM would require to visit the NTM solution tree: during
the visit we must keep track of the currently visited brunch

an accepting brunch can be at most 20(ftm) |ong

because, only 2°0((M) different memory configurations exist

a stack with 20(fm) locations is needed too much

On the other hand
also the number of brunches is at most 2°(f(n)
and it may be possible to organize those brunches in another tree
data structure having depth O(f(n))

265

Proof of Savitch’s Theorem

C
start First step of the proof:
all the accepting states are
fused
Cstart
Omoom_ﬁm
Omoom_oﬁ

A NPSPACE tree

It has depth 20(poly(m) and

total number of nodes 20(poly(n) Cacoepts

(note: /ess than 2depth))

266

Proof of Savitch’s Theorem

| e define a program CANYIELD(c,,c,,t):
m accept, if the state c, can be reached from c, in t steps on the NTM
= reject, otherwise
m CANYIELD(CypartsCoccepy 2"™) accept if and only if
= the input string corresponding to c,, is accepted by the NTM
m the space used by of CANYIELD
m each configuration ¢, requires O(f(n))
= the maximum stack depth is O(log(t)), where t= 2f(m

= total space is O(f(n)2)

267

PSPACE

Definition: The class of languages that can be decided by a single
tape TM in polynomial space is denoted by PSPACE:

PSPACE = | JSPACE(n")

k=12,...

268

l Some Observations
_

What about the following relations?

P and PSPACE
P 0O PSPACE, because a program that runs in polynomial time can
access only a polynomial number of memory locations

NP and NPSPACE

NP O NPSPACE, because each branch of the NTM has polynomial
depth and can access only a polynomial number of memory
locations

269

l Some Observations
_

What about the following relations?

PSPACE and NPSPACE.
Savitch’s theorem ensures that PSPACE=NPSPACE

PSPACE and EXPTIME
—_ J_A
EXPTIME = Cﬁs_.._j_/_m@)

PSPACE [EXPTIME
There are 20((M) different configurations for a

SPACE(f(n)) computation...
...hence SPACE(f(n))OTIME(20((M),

270

A Hierarchy of Classes

P OO NP O PSPACE=NPSPACE U EXPTIME

We don't know how to prove PZPSPACE or NPZEXPTIME.
But we do know: PZEXPTIME.

271

SPACE-Completeness

|
Definition: A language B is SPACE(f(n))-complete if
1) B is in PSPACE(f(n)), and
2) For every language AOSPACE(f(n)) we have A<, B,

where < denotes poly-space reductions

Some authors require the reduction to be poly-time, not
poly-space. Poly-time implies poly-space and decrease the
possible reductions

Definition: A language B is SPACE(f(n)) -hard if

- for every language A0 SPACE(f(n)) we have A<.B.

272

W TQBF

|
The typical PSPACE-complete language is true fully
quantified Boolean formulas (TQBF):

TQBF = { ¢ | @is a true fully g.b. formula }.

Some examples:

[(xOy[x = y]UTQBF

(IxCy[Z[(x Oy) O(x Oz)]ITQBF
Theorem TQBF is PSPACE-Complete.

273

j TOBF

|
Theorem TQBF is PSPACE-Complete.

Proof:
TQBFOPSPACE
This program uses
Algorithm Tgbf(Q, Xy,...,Qu X P(Xy,..., X)) linear space
if k=0, return ®
if Q=[] then

return Tgbf(Q; Xy,...,Qy 1 X P(Xq,..., X, g true))
OTagbf(Qq Xq,...,Qy Xy P(Xy,..., X, 1,false))

if Q.= [, then
return Tgbf(Q1 x1,...,Qk-1 xk ®(x1,..., xk-1,true))
OTqgbf(Q1 x1,...,Qk xk-1 d(x1,..., xk -1,false))
274

proof: TQBF is PSPACE-Complete

If ADPSPACE, then A <, B
Idea: Given M and w, we can make a QBF @, ,,
such that: “wOA if and only if ® ,O0TQBF”.
The TM that decides A takes time 2°(oy(IWD) on input w.
The question: YIELD(Cyar/Coceept 2°CPOV(IWIN)?
We define a QBF ¢(c,,c,,t) of length O(|c|lbg(t)):
For ¢(c,,c,,1) this is simple (as in Cook-Levin).
For ¢(c,,c,,2t) we could try:
@(cy,C,,2t) = [, [o(cy,Ct) O@(c,,Cyt)], but in this way, the
length of the stack is |¢@(c,,c,,t)| ~ t, which is too big because t

may equal 20(poly(|wl)) 575

TQBF is PSPACE-Complete

Instead, we use

AROTONNSHWHB_H_ADEOAVDAAnTnBv%ns\:anv _” ARnw:nfc ”_
Now the length of @ grows indeed like O(]|c|lbg(t)), which gives a linear
stack even when t = 20(oly(w)),

As a result, for every input w, we can make a
QBF ®y,y = ACotartsCaceepr2°PYIMY) such that:
"M accepts w (WOA)" if and only if “®,, O0TQBF”,
and size |®y | = O(poly(n)?).

The transformation w - @, ,, is poly-time and, thus, it is also poly-space.
276

Space Complexity Classes

Remark

in space complexity the role of the under linear classes is more
important than in time complexity

for example, search in trees, sorted vectors.....
In the following we will discuss about

L= SPACE(log n)

NL= NSPACE(log n))

277

SUM and MULT belongs to L

|
binary SUM O L

SUM ={(a,b,c)|c=a+b}

during the sum, only the remainder must be stored
binary MUL O L

MUL ={(a,b,c)|c=a* b}
only two bits must be stored

278

Graph path belongs to NL

|
PATH is in NL=NSPACE(log n)

PATH ={(G,v,u) | thereisapathfromn to vin G}

G=(V;E),v,ullV

1.X « Vv The algorithm search
2. counter — |V]| for the path

3. repeat ¢ guessing the node at
4, decrement counter by 1 each step

5. guess a node y OV s.t. (x,y) O E | * memorizing only the
6.ifyOuthenx vy last node

7. until y = u or counter = 0

8. if y = u then accept, else reject -

G is returned an edge at each
step.... otherwise G will consume
too much space

j _U>|_|_|_ _m _/_ _IlﬁOD\._ _U_mﬂm The machine that implements PATH
_

will call the reduction any time
it needs an input

OL O NL, L is log-space reducible to PATH
Input: an input string x,a TM M

Task: output a graph G=(V,E) and two nodes v, u
path from v to u in G iff x is accepted by M

compute n, the number of different configurations of M while
computing input x
fori=1ton
forj=1ton
if there is a transition of M fr
configuration j, output an edge (i,j) of G
output the number corresponding to the start and the accepting
configuration

V s.t. there is a

configuration i to

280

Immerman theorem and the
complement class

Theorem
if there is A s.t. ACONL-complete and ACJcoNL, then NL=coNL

proof

since AUNL-complete, then for each A' O NL. A's,
only if f(x) OA

On other hand, let A, A’ be the complements of A and A’. x JA' if and
only if f(x) CA, SO ACINL implies A'CNL
(i.e. AOcoNL implies A'CJcoNL)

thus NLCcoNL. The converse can be proved in a similar way

A and x O A' if and

281

Immerman theorem and the
complement class

Theorem (Immerman,1988)
PATH is NL-complete and belongs to coNL, thus NL=coNL

Immerman theorem can be extended to the other space complexity
classess

Theorem:
Os(n)=log(n), NSPACE(s(n))=coNSPACE(s(n))

282

l Log space problems are poly-time

Theorem
NLCP

Proof
any problem in NL is reducible to PATH
the reduction can be carried out in O(log n) and, as
a consequence in O(2'°9")=0(n) time
thus, any problem in NL is polynomial time reducible
to PATH

283

l Summing up

L ONL=coNL [1 P [PSPACE

284

Probabilistic algorithms

285

Probabilistic Turing machine

A probabilistic Turing machine M

is @ non deterministic machine with two legal moves
each non deterministic step is called coin-flip step
the probability of a branch b containing k coin-flip steps is P(D) = 27K
the probability of accepting w is
P(Macceptsv)= > P(b)

bisan
acceptingranch
M decides a language A with error probability ¢ if

wOA implies P(M accepts w)>1-¢

wlIA implies P(M rejects w)>1-¢
286

Probabilistic polynomial time

_

Definition
BPP is the class of languages that are recognized by probabilistic
polynomial time Turing machines with error probability 1/3

Theorem
For any €<1/2, any polynomial p(n), any probabilistic polynomial time
Turing machine M; that operates with error g, there is another
polynomial time Turing machine M, that operates with an error 2"

287

Proof (sketch)

Proof
M, is
we run K instances of M, in parallel
if most of the outputs are accept then accept, otherwise reject
The probability that M, is wrong is
P(M,iswrong)< > P(S)s2*e*(l-¢) <(4el-¢))

Sis abad
result sequence

The theorem is proved if

K > p(n)
“log,4c(l-¢)

288

The class BPP

of course, POBPP
it is unknown whether NPOBPP and/or BPPONP !!

It is supposed that NPOBPP, otherwise we could have
reasonable algorithms for NP problems

Somebody suppose also BPP=P

BPP is closed under complement, BPP=coBPP

289

BPP and random number generation

A randomized algorithm needs a source for random numbers

it is unknown whether perfect random numbers can be generated
either by physical devices or mathematical tools

a perfect random source generate a sequence of bit b;,b,,... where
P(b,=y,,..b,=y,)=2", for anyy,,y,,...

5-BPP

is class of languages that are recognized by probabilistic polynomial
time Turing machines where the probabilty of each move is in [3,1- 3]
instead of being 2 (intuitive definition)

it can be proved that, for any 6<1/2, 5-BPP=BPP!!

290

Primality

Primaility is
is the number p prime?

Primality is used by public key cryptographical algorithms (f.i. RSA)

Primality has been recently proved to be in P O(log(n)!?), however
this algorithm is very slow in practice

Primality can be tested using random algorithms

291

Miller-Rabin test

Miller-Rabin primality test for numbers
function Miller-Rabin(a, p)
let 5, d be integers where d'is odd and that p-7=2 d holds
if (a’ =1(modp) and
a”> % =1(modp) for any Osr<s-1) return true
else return false

It can be proved that

if p is not prime, then the Miller-Rabin(a,p) test fails for at lest a half
of the a, where 2<a<p-1

292

Testing primality

_
A method to test primality of p

chose random a,,..,a, in [2,p-1]
check Miller-Rabin(a,, p), for each a,
if some test fails then accept

else reject

Remark
the above test is carried out in polynomial time on a probabilistic TM
If the p is prime, the above algorithm always accept,
If p is composite, the probability of accepting is smaller than 2*

293

Integer factorization

Integer factorization is
given an integer n, find its prime decomposition

Integer factorization properites
it is considered much more difficult then primality

it is unknown whether is in NP or in co-NP (no polynomial certificate
is known)

However

the corresponding decision problem “does N have a factor less
than M?" is known to be in both NP and co-NP

there is a polynomial algorithm for integer factorization on
quantun computers

294

Quantum computing

A quantum Turing machine (intuitive definition)
a Turing machine where
the internal state is defined by a finite set of qubits
the tape is a sequence of qubits

About QTMs

each qubit can be in a state 0, 1, or in a superposition state, thus a
quantum Turing machine can carry out parallel computations...

in general, quantum computer can produce only a result having some
probability of being correct

a QTM can solve the same problems as a DTM, but in a faster way!

295

Quantum computing
complexity classes

Exact quantum polynomial (EQP)

languages that can be decided with probability 1 in polynomial time on a
QTM

it is the quantum class corresponding to P
it has been proved P O EQP, strictly!!

Bounded-errror quantum polynomial (BQP)

languages that can be decided with probability larger than 1/3 in
polynomial time on a QTM

it is the quantum class corresponding to BPP

it holds P OOBPP OBQP O PSPACE, but it is unknown whether the inclusion
is strict for some inclusion!

it is unknown the relation between NP and BQP
it has been proved that integer factorization is in BQP (Shor algorithm)!!bgg

Polynomial hierarchy

297

Oracles

1

Oracles
L/ LC,C? :There exists a TM of class C, with
access to an oracle in class C, that accepts L

Examples

PC = Languages accepted by DTM with access to an
oracle A in class C.
NPC¢ = Languages accepted by NTM with access to an
oracle Ain class C

298

l Polynomial hierarchy

|
The polynomial hierarchy extends the definition of P, NP e coNP

Definition by indution
20 =P
M?w = Z_UM_

[l=c02i

Polynomial hierarchy (PH)

PH =%

299

j An alternative definition
_

Deciding whether a formula is satisfiable belongs to

only existential quantifier existential & universal quantifiers

NP-complete PSPACE-comple

300

l An alternative definition

|
Alternative definition

>, is the class of all languages reducible to deciding
the sat. of a formula of type

[00X, DX5... R(Xq,X5,X5,--+)

. J
Y

i alternating quantifiers

301

l Some inclusions
_ .

Mm [,

2,0 (1,

T

2.,=NP [1,=CONP

<

NP ncoNP
f

20=[1o=P 302

Some properties

PSPACE is an upper bound for the hierarchy PH:
PHOPSPACE

M, contains the languages probabilistically decidable in
polynomial time

BPP 13, OOPH
notice that if it is unknown whether BPP (13>, =NP

303

The collapse of the hierarchy

Its in unknown whether the inclusions of the
hierarchy are strict, however

Theorem

If for a k, > = X2, 0r 2 =[], then, for any r>k the
hierarchy over k collapses, i.e. >, = >..1 =[1,= [+1

In particular, if NP=coNP (P=NP), then the whole
hierarchy collapses, i.e. PH=NP= % =[],

304

