Deep neural networks
“siia | (DNNSs)

1240
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1 | Deep neural networks

"SA| (DNN)
Definition ver 1.0
» Just networks with many layers
Up to 14 year ago, researchers rarely used deep networks
» at that time, no theoretical advantage of DNNs
Deep networks are universal approximators:

* Obvious proof: two layers can approximates any
function, the remaining layers can implement the
identity function

No clear advantage in generalization result for deep
networks
» Experimental results (on simple application) had not shown
any advantage from DNNs

» DNNs suffered from long-term dependence problem!!
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Deep neural networks

Then researchers started to suspect that

» Very difficult problems may require the use of several layers:
computer vision, language understanding,...
» New learning methods may have to be used to overcome the
long-term dependence problem:
Unsupervised learning for hidden layer?
Stacked supervised learning?
A lot of parameters ....
Intuitive evidences
» Each layer produces a more abstract representation of inputs
simplifying difficult problems in an iterative way
» Animal brains are layered ... , it is not a casuality

211
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Current DNNs are much more
complex than old DNNs

Current DNNs exploits a lot of peculiarities
» Different types of layers
» Weight sharing
Some neurons share the same weights
» Modularization

A sub-module of the network is applied on
different subset of the inputs

» particular activation functions
Rectifier, drop out, max out, ...
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Convolutional neural networks
» For image classification
» Originally used for handwritten digit recognition

» Currently, the best tools for object recognition sin
images are based on evolutions of convolutional
neural networks

The layers of a convolutional network
» Convolutional layers

» Pooling layers

» Fully connected layers

213
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Kernel filters in image processing

» Filter kernels are matrices, which can be applied to an image
by convolution

0 1 0 11 1
1 -4 1| Edge Detection I1 1 1] Blur
0 1 0 11 1

» By convolution with a 3x3 matrix M, the pixels of each 3x3
window are multiplied by M

» A convolutional layer is almost equivalent to the application of
a kernel whose parameters are trained!!
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; Convolutional neural networks:
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Convolutional layers

» A neuron of a convolutional layer 000
implements a kernel

The neuron is connected to

a window (receptive field) of the original image
(f.i., a 3x3(x3) square )

The kernel matrix is defined by the weights of the
connections

» The kernel is convoluted over the input

There is a neuron for each window receptive field
All the neurons share the same weight sets

&l
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» A convolutional layer has the dimension
of the input image (width and height) 000

=

» Intuitively, convolutional layers extract
low level features from the input image
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Pooling layers

» Each neuron of a pooling layer summarize the result of a
small window of the image
(f.i., a 2x2 receptive fields in the previous layer)

» Summarization can be by taking maximum, a random value,

» Pooling layers decrease the size of the features (decrease
width and height)

» Intuitively, pooling layers are used to simplify the problem by
reducing the features to be considered
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Fully connected layers

» Common layers in which each neurons connected to all the
neurons of the previous layer

» Intuitively, fully connected layers allow to combine and reason
about the extracted features in order to take the final decision
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The architecture
» A convolution layer followed by a pooling layer
» One or several fully connected layer

» The pair (convolutional, pooling) may be repeated several
times

» Several convolutional layers can be used in parallel

Fuy Fuly Outpat Prodichons
{omnected  Cormectng

N -
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A lot of different architectures are now available
1998, LeNet 6 layers, 68K parameters

2012, Alexnet 8 layers, 60M parameters
2014, Inception, 22 layers, 2M parameters
2014, VCGG net, 16 layers, 138M parameters
2015, ResNet 152 layer, 60M parameters
Same image datasets

» Imagenet 14M images, 1000 categories

» CIFAR 100, 60K images, 100 categories

» MNIST 60K handwritten characters

> ...

Current convolutional architettures are over-parametrized!!!
» More parameters than images

» What are the consequences of this?

vVvyVvyTyvVvyy
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Current convolutional architettures are over-parametrized!!!
» Learning is simple, not much affected by local minima
this is expected

» Generalization may be also good
this is achieved only applying a number of tricks
* Pooling
* Weight decay
* Use validation to stop
» Dataset aumentantion
* Images can be rotated, scaled, ....
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An experiment Zang, et al.

» with CIFAR 10 dataset (60K images, 10 classes)

» Using Inception (1.6M par)

» What does it happen without the usual "tricks"?
The networks easily reaches 100% on train set,
but of course, the generalization is low

» What does it happen if the labels are replaced by random
labels? And what if also the image pixels are shuffled,
randomly permuted...

The networks easily still reaches 100% on train set,

but of course, now the performance on test set is that of a
random classifier

Let us have a look at
https://arxiv.org/abs/1611.03530
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Approximation capability ver 1.0

» DNNs are universal approximators
(with mild constraints on architecture)

» An example of the proof,
Given a target function t,
the first three layers of the DNN approximate t

remaining layers just copy the ouptut of the third
layer

223
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Approximation capability ver 2.0: the idea Scarsell
“(using the same of amount of resources),

deep architectures can implement more complex
functions than shallow networks”

A new tool was required to evaluate the complexity of
the implemented classifiers

» The following complexity measures were not useful
Number of neurons
VC-dimension
Approximation capability

Bianchini,
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» N: a neural network
» f: the function implemented by the network

» S, the set of the non-negative patterns, i.e.
Sw=tX| fn(x)20}

The idea
» To measure the topological complexity of the set Sy
» ltis reasonable when N is used for classification purposes

225

-t | Topological complexity:
“bsina [ -an intuitive viewpoint

» Black regions represent the non-negative patterns, i.e,, Sy
» Can you say which set is more complex in each couple?

11
e =
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Betti numbers
» used to distinguish spaces with different topological properties
» for any subset S c R", there exist n Betti numbers,

bo(S), by(S), ..... b,.1(S)

Formally
» b, (S): is rank of the k—th homology group of the space S.

Intuitively
» b,y(S): is the number of connected components of the set S
» b,(S): counts the number of (k+7)—dimensional holes in S

227

't | The proposed measure of
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1240

» In topology, the sum of the Betti numbers
B(S)=2; b(S),
is used to evaluate the complexity of the set S

» We will measure the complexity of the function
fy implemented by a neural network N by

B(Sn)=2i b(Sp),
where of Sy={x| fy(x)=0}.

228
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B(S)=1

bo(S)=1 by(S)= by(S)=2 b,(S)=1 bo(S)=1b,(S)=0  bo(S)=1 b;(S)=1

Betti numbers: examples

B(S)=3 B(S)=1 B(S)=2

‘8 &=

bo(S)=1bs(S)=1  by(S)=1by(S)=2 bo(S) 1b1(S bo(S)=1 by(S)=2)
B(S)=2 B(S)=3 by(S)= by(S)=1
B(S) =3 B(S)=4
229
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The considered networks
» feedforwad layered perceptrons o2 wi )

» with sigmoidal (ridge) activation functions in the
hidden layers and linear in the output layer

Upper and lower bounds on B(S,) varying
» The number of hidden layers /

» The number of hidden units h

» The number of inputs n

» The activation functions: tanh, arctan, polynmial of
degree r, generic sigmoids

230
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» [: number of hidden layers
$ Th It » h: number of hidden units
UNIVERSITA € resulits » n: number of inputs
DI SIENA .
1240 » r: degree of the polynomial
Layers | Acvation | Bound o 5
Upper bounds
1 threshold h" n h
1 polynomial (2 +r)(1+r)1 n r
1 arctan (n + h)2 n h
many arctan 2h(2h-1) o (n] + p)n+2h n,h,l
many tanh 2h(h-1)/2 o (n] 4 p)n+h n,h,l
many polynomial (2 + ,-I)(l +r ) n I h r
Lower bounds
1 sigmoid ((h-1) /n)" n h
many sigmoid /-1 I h
many polynomial 2/-1 , h
231
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W.r.t. the number of inputs n, the complexity
» always grows exponentially
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» [: number of hidden layers
Th I » h: number of hidden units
UNIVERSITA e results » n: number of inputs
DI SIENA .
1240 » r: degree of the polynomial
Layers | Aciation | Boundon (5
Upper bounds
1 threshold h" n h
1 polynomial (2 +r)(1+r)1 n r
1 arctan (n + h)2 n h
many arctan 2h(2h-1) o (n] + p)n+2h n,h,l
many tanh 2h(h-1)/2 o (p] + n)r+h n,h,l
many polynomial (2 +r)(1+ri)? n,l h r
Lower bounds
1 sigmoid ((h-1) /n)" n h
many sigmoid /-1 I h
many polynomial 2/-1 , h
233
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w.r.t. the number of hidden neurons h, the complexity
» grows polynomially, for shallow networks
» grows exponentially, for deep networks
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» [: number of hidden layers
% Th |t » h: number of hidden units
UNIVERSITA € resulis » n: number of inputs
DI SIENA .
1240 » r: degree of the polynomial
Layers | Aciation | Boundon (5
Upper bounds
1 threshold h" n h
1 polynomial (2 +r)(1+r)1 n r
1 arctan (n + h)m2 n h
many arctan 2h(2h-1) o (n] + p)n+2h nh,l
many tanh 2hh-1)/2 o (n] + n)nth nh,l
many polynomial (2 +r)(1+ri)? n 1 h r
Lower bounds
1 sigmoid ((h-1) /n)" n h
many sigmoid /-1 Lh
many polynomial 21 Lh
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Summing up
» with the same amount of resources, deep networks can
realize more complex classifiers than shallow networks!!

Remarks

» This does mean that all the functions can be better
approximated by deep networks!!

» Only some functions with particular symmetries will have
benefict from being approximated by deep networks
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Notice that
» A layered network implements a function
fN=g1°92.. - g - t
gy is the function implemented by layer k
- is the function composition operator
» Iffy=g,- t, then fy behaves as t on all the regions A; A,
where g,(A, )= R"
» With several layers, the number of regions A, such that
ai(...94(Ay))= R"can grow exponentially

Deep networks can replicate more easily the same behavior
on different regions of the input domain

237
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g(x) =1—|lx|?

t(x) =[1—xf,1—x3]
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“ 1(GNNs)

The main idea o0 O ©
: v \Z} V3
» graphs are an extension of sequences 2
Ve

M
Recurrent networks operate on
sequences of data v,
» graphs are irregular grids Vs .
Convolutional networks operate on grids
Vy

of data

» GNNs a class neural network models that v,
extend both recurrent networks and

.\ . Vs
convolutional networks and operates on V/
3
graphs Vi /./‘V7
®__ g

239

¢ | Graphs: they are a general tool
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Patterns with their relationships, examples of applications for GNNs
» Social networks

Nodes represent users (may have attached information)

Links represent friendships (may have attached information)
» Protein networks

Node stand for proteins (may have attached information)

Edges denote their possible interaction (may have attached
information)

» Molecules
Nodes stand for atoms (may have attached information)

Edges stand for physically close atoms or those atoms having
an atomic interaction (may have attached information)

240
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‘| Graph Neural Networks
ST (GNNS)

» The first model to be named GNN has been proposed here in
Siena, but that before that there were a lot of works on neural
networks for graphs, particularly in Pisa, Florence and Siena (e.g.
Sperduti, Frasconi, we in Siena,....) but also elsewhere in Europe

» Currently, several new GNN models have been proposed.

» In the following, first | introduce the original model and then |
explain how this has been modified

241

. | GNNs can be defined by

§
(e

uwvirsta | €xtending recurrent

DI SIENA

networks m B

Remember the unfolding network

» | recurrent networks, we have a transaction network f,, and an
output network g,

» A copy of f,, g, for each time instance, connected in sequence

o - o © ©----0

x(0) X(lj x(2)  x(3) x(T)

242
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# | GNNs can be defined by
“Usina | extending recurrent networks

We still have two neural networks

» An aggregation funtion f,, for
computing a node state z f

» A g, for computing a node output

» Then, we unfold the graph and we get
the encoding network

X X5 .
N =
x, O—+——-0O
x, 0

Input graph

Encoding network

243

GNNs can be defined by
“usina | extending recurrent networks

For a general graph, we can construct the
encoding network

» The x; are the feature vectors attached to nodes (the
node information)

» The edges represent the relationship between patterns
» The o, are the network output
» The z are an internal state representation for the node

0, —> 03

xb—* 3 X2
///O\ =)
xy, OO
x, 0

Input graph

Encoding network

244
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The neighborhood
of this node

» The state z, of a node are computed by ST ,

. - : :" ; @ x5
cornbmmg the information on node .\ %
neigborhood j)xs

» In the original model, we used ‘\ /,». 7

Zy = Xin o ohw(Xn Zn)

where h,, is a three layer
neural network

' Node state z,

245
» but, several other networks are now used ..

245

wvimai [GNNS: computing the outptut

DI SIENA

1240

» The state o, of a node are computed from

the states z,
-‘F\lode output o,

where g,, is a three layer neural network

» In the original model, we used

Zy = gw(xv' Zy)

» but, several other networks are now used
and sometime is just not used.... back on
this later 246

246
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The enconding network is cyclic ... how are outputs computed?
1.

Set initial states z(t)=0
Repeat

activate units fto compute
new states z(t+1)

Until z(t) do not change any more

activate units g to compute output%2 — 0
22

Encoding network

247

DI

A Computing GNN outputs

SIENA
1240
The enconding network is cyclic ...
» Does the forward phase always converge?

» Does the forward phase always converge to
the same state despite the initial state?

Yes

» The original GNNs adopt a mechanism based
on contraction systems
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Consider the whole encoding network as
adynamic system/system of equation does the
system always converge/ does the system has a
unique solution?

Z(t) = F(X,Z(¢))

» Yes, provided that it is a contraction, i.e, if the
norm of the Jacobian is smaller than

oF (L, Z)
o | <1

» The original GNNs adopt a mechanism which

249

ONvERSITA Computing GNN gradient

1240

Based on unfolding of encoding network
» The encoding network is unfolded through time

The result is a feedforward network equivalent to
the encoding network

» The gradient is computed on the unfolding using
backpropagation through time algorithm
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The encoding i J‘/
<
2 x1

network
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X
3
“— x3

The unfolding of the
encoding network

- z,(TI)
zggu

Time 0 Time 1 Time 2 TimeT-1  Time T-1

i W
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The unfolding network defines how the output of the

GNN is computed: In the original GNN model

» In each time layer there is a copy of f,, for each
node of the graph

» Inside the layers, the f,, are not connected,
through the layers the fw are connected according
to the graph connectivity

» The parameters of the f,, are shared among the
layers

» The number of layers depend on the onvergence
time |

» By changing some of those assumptions, we get
the modern GNNs

252
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Fix the number of layers
» Use different parameter set on each layer

» You may also want to remove the direct input to
the internal layers

» Now, this looks like a deep network

o 2;(0) o | 2D ol B 72(T-1) N o ﬂ
0
% = L fo| 7 hol— g
2
20 20 0,
o 77 [— 4 o -Ta] -
Time 0 Time 1 Time 2 Time T-1  Time T-1
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. | Modern GNN: Graph convolutional
“Ssieva | neural networks (GCN)

1240

» Graph convolutional neural networks is a well
know example of modern GNNs

» In GCNs, the aggregation function is

z, (k=1 W,
Ine[v]||ne[n]|

z,(k) = Z relu( )

n-ov
Kipft, Welling

254
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; Are GNNs sort of convolutional
“osieva | neural networks?

» In convolutional networks, a kernel is applied to each
point v of an image (a grid) or of the previous layer

» The oputput of the kernel is
zZ, = z relu(x,W, )
v in ne[n]

» In GNN a function f,, is used to combine the
contribution of the neigboors

Zy = Yin o ohw(Xn Zn)

255

7 | Are GNNs sort of convolutional
UNIVERSITA
osina - | neural networks?

» In convolutional neural networks, the kernel is
applied on each pixel of the input image
In GNNs, the aggregation function is applied on
each node.

» In convolutional neural networks, several kernels are
used to obtained several feature map on each layer

In GNNs, the aggregation function produced a
state whose dimension is larger than one: you
can think this as a set of aggregation functions

256
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‘| About GNN computational
“wsen” | capability

» Which applications on graph can GNNs implement?

» Let us consider a function ¢ that takes in input a
graph G and return a real output ¢(G,n) for some
node n

» Answer 1.0

The orignal GNN model, under mild assumptions on
¢©(G,n), can approximate, any function ¢ in probability

257

7 | About GNN computational
M| capability

Intuitive idea of the proof

» We adopt the same reasoning we used for recurrent
networks

If the aggregation function f,, can store into the
state z the graph,

then the output function g,, can decode the state
and produce any desired ouput from z

» But with graphs, there is a difference that it is worth
to discuss

258
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» The state z,(0) can contain only info about the features of node n
» The state z,(1) can contain only info about node n and of its neighboors

» The state z,(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

» The best you can do, it is to store store in z,(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n

Time 0 Time 1 Time 2

] >

Tlme T-1

259

UNI\;ERStITA UnfOIding tree
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1240
» The state z,(0) can contain only info about the features of node n
» The state z,(1) can contain only info about node n and of its neighboors

» The state z,(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

» The best you can do, it is to store store in z,(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n

X

o &
Z4,(0)= Xl. X Z.2)= @* Input X;

Z,(1)= ! graph
X, / x1 X3
x1 ‘ X3

X3
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Two copies of the same node or two different nodes with the same features?

» The unfolding trees may contain copies of the same nodes due to cycles
and the bidirectional links

» The aggregation function can aggregate the information from neighboors,
but, since it is a local activity, the aggregation may not able to distinguish
two copies of the same node from two different nodes with the same
features

261
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Unfolding tree

n The unfolding tree 7,7 is the tree obtained by unfolding the graph starting in v up
to d levels

Unfolding equivalence
n two nodes are unfolding equivalent n~v if T,@ =T, 9 holds for every d

#| non-equivalent

' equivalent
®0 6

262
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Functions that preserve the unfolding equivalence

» A functionz : @xN/—R™M preserves the unfolding equivalence if
n~v implies t(G,n)=1(G,n)

Example

» a function that preserves the unfolding equivalence has the some output on
a uniform graph where all the node has the same labels

Black nodes = output 1

4 4 4 White nodes = output 0
it preserves the
unfolding v i t
equivalences 4 4 . itdoes not preserve
‘ 263 / 4 / 4 * unfolding equivalences

4

263

Thus, what GNNs cannot
“Susa | approximate

1240

GNNs and the unfolding equivalence

» GNNSs can approximate only the functions that preserve the unfolding

equivalence: this result applies also to modern GNNs!
» such a behaviour may not be a limitation

two concepts having the same labels and the same relationships with the
other concepts provide the same information:

why those concepts should be distinguished
» with an appropriate modification of the graphs, a functions may preserve the

unfolding equivalence

f.i. wh&h all the labels of the input graph are distinct labels
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A funny experiment about GNN
"W approximation properties

1240

A GNN produces the same result on a uniform graphs but ...

» if a noise is introduced into the labels, the nodes become distinguishable
and, in theory, GNNs can implement any function

» is it possible to learn a GNN that return -1 for a half of the nodes (white
nodes) and 1 for the other half (black nodes)?

10
2 4« arandom label
8. outputis 0
5 /
265 7 DN output is 1

265

7 | Afunny experiment on GNN
UNIVERSITA . . .
osiNa | @pproximation properties

300 random uniform graphs
» random labels

» the error was measured by the difference between the desired number of
black nodes on those obtained by the GNN

» results were compared with those obtained by random process and a
feedforward neural network

0.25

0z

025
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Advanced question

» We would like to get some details about the aggregation and the
output function we should use

Main idea by Xu et al
» exploit Weisfeiler-Lehman test of isomorphism
An algorithm that produces iteratively a coding of the graph
an allows to recognized whether two graphs are isomorph
» GNNs are sufficiently powerfull when they can implement
Weisfeiler-Lehman test of isomorphism

267
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1240

Xu et al.

» Let us assume that f,, is decomposed as
Zv(t) = TC(Zv(t — 1),T({Zn(t —Div - Tl}))

» and that there is a function 6 that combine all the states of a
graph to produce an output for the graph

¢(G)=6(z4(T),.....)

(by this schema, we capture most of modern GNNs

268
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Xu et al.

» Let us assume that f, is decomposed as

2,(t) = (2, (t = 1), t({z,¢ — 190 v = 1))

9(G)=6(z1(T)......)
» If t aggregates recursively the children features
» 7, and 0 are injective

» then the GNN produces an embedding of the graphs
on which we can apply the Weisfeiler-Lehman test to
recognize whether the graphs are isomorphic or not

269

= | Which aggregation function?

DI SIENA

- z,(t) = (2, (t — 1, 1({z,t — 1: v = 1))
» If © aggregates recursively the children features

» then, the aggregation function should have at least two layers
(one hidden layer)

but most modern GNNs exploit just a single layer, e.g. in

CGN k—1) Wk
2,(k) = Z relu(IZ;e([—))

4 vllne[n]]

The advantage is in the fact that using a single layer
makes the architecture simpler, faster, and improves

generalization

A big advantage for applications with a lot of features

270
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Which aggregation function?
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z,(t) = (2, (t = 1), 1({z,t — 1: v = n}))
9(G)=6(z1(T),.....)
» =, and 0 are injective
But some modern GNNs exploit AVERAGE, MAX. In this
case, ,/0 are not injective. e.g. in CGN
_ z,(k—1) Wk
200 = ) reluer )
271
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‘ Which aggregation function?

An example
» the average (normalization) may be useful to avoid that the
gradient become smaller during back propagation
» but with average, you cannot count, e.g. the number of children
of a nodes
If your target application is to recognize the users that have a
lot of friends in a a social network, using AVERAGE in your

aggragation function is nota good idea!
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» From a theoretical view point, there are few results
generalization in GNNs

One for the old GNN model (Scarselli, Tsoi, et al)
* Based on Vapnik-Chernovenkis
* The bounds are similar to the of other networks

 Surprisingly, the length of unfolding in time does not play
any role: this may be due to converge of the GNN model

One for modern GNNs (Garg et al.)
» Based on Rademacher complexity (not studied here)
* The bound depend on the lenth of unfolding

» Similar to that or recurrent networks
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p=number of

paramters Graphs (GNNs and non—positional RecNNs)

N=number of Polynomial O(p log(N))
graph nodes

Tanh,logsig, atan  O(p*N?)

Sequences (recurrent networks)
Polynomial O(p log(N))
Tanh,logsig, atan  O(p*N?)
Vectors (multialyer neural networks)
Polynomial O(p log(p) )

974 Tanh, logsig, atan  O(p*)
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“ " GNNs

d=brancing factor C<1/d
r=state dimension O
L=depth
m=sample size

: . C=1/d
y= margin used in rdL rL
the margine loss O( ) O(

C =asort of C>1/d
Lipschitz constant O
for aggregation

275

275
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5
"7,

| practice
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» Depending on the application, the generalization in GNNs is

difficult to control

Test distribution must be same as training distribution both
for node features and node connectivity

For complex applications, a lot of data may be required
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Thank you for your attention!
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NS Lecture of July 21th

piI SIENA
1240 The lecture will start at 10.00 am

» We will have a test
Written
Close answers
About 1hour time to complete

» The testis mandatory for students of Smart Computing PhD
who want to have to pass an exam to have the credits,

but it is open to anybody

» After the test, we will discuss the responses, thus this will be
used as a course summarization
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