
1

Deep neural networks
(DNNs)

Deep neural networks
(DNNs)

Definition ver 1.0

 Just networks with many layers

Up to 14 year ago, researchers rarely used deep networks

 at that time, no theoretical advantage of DNNs

 Deep networks are universal approximators:

• Obvious proof: two layers can approximates any
function, the remaining layers can implement the
identity function

 No clear advantage in generalization result for deep
networks

 Experimental results (on simple application) had not shown
any advantage from DNNs

 DNNs suffered from long-term dependence problem!!

209

210

2

Deep neural networks

Then researchers started to suspect that

 Very difficult problems may require the use of several layers:
computer vision, language understanding,…

 New learning methods may have to be used to overcome the
long-term dependence problem:

 Unsupervised learning for hidden layer?

 Stacked supervised learning?

 A lot of parameters ….

Intuitive evidences

 Each layer produces a more abstract representation of inputs
simplifying difficult problems in an iterative way

 Animal brains are layered … , it is not a casuality

Current DNNs are much more
complex than old DNNs
Current DNNs exploits a lot of peculiarities

 Different types of layers

 Weight sharing

 Some neurons share the same weights

 Modularization

 A sub-module of the network is applied on
different subset of the inputs

 particular activation functions

 Rectifier, drop out, max out, …

211

212

3

An example of DNNs:
convolutional neural networks
Convolutional neural networks

 For image classification

 Originally used for handwritten digit recognition

 Currently, the best tools for object recognition sin
images are based on evolutions of convolutional
neural networks

The layers of a convolutional network

 Convolutional layers

 Pooling layers

 Fully connected layers

Convolutional neural networks:
convolutional layer

Kernel filters in image processing

 Filter kernels are matrices, which can be applied to an image
by convolution

Edge Detection Blur

 By convolution with a 3x3 matrix M, the pixels of each 3x3
window are multiplied by M

 A convolutional layer is almost equivalent to the application of
a kernel whose parameters are trained!!

0 1 0
1 −4 1
0 1 0

1 1 1
1 1 1
1 1 1

213

214

4

Convolutional neural networks:
convolutional layer

Convolutional layers

 A neuron of a convolutional layer
implements a kernel

 The neuron is connected to
a window (receptive field) of the original image
(f.i., a 3x3(x3) square)

 The kernel matrix is defined by the weights of the
connections

 The kernel is convoluted over the input

• There is a neuron for each window receptive field

 All the neurons share the same weight sets

Convolutional neural networks:
convolutional layer

 A convolutional layer has the dimension
of the input image (width and height)

 Intuitively, convolutional layers extract
low level features from the input image

215

216

5

Convolutional neural networks:
pooling layer

Pooling layers

 Each neuron of a pooling layer summarize the result of a
small window of the image
(f.i., a 2x2 receptive fields in the previous layer)

 Summarization can be by taking maximum, a random value,
…

 Pooling layers decrease the size of the features (decrease
width and height)

 Intuitively, pooling layers are used to simplify the problem by
reducing the features to be considered

Convolutional neural networks:
fully connected layer

Fully connected layers

 Common layers in which each neurons connected to all the
neurons of the previous layer

 Intuitively, fully connected layers allow to combine and reason
about the extracted features in order to take the final decision

217

218

6

Convolutional neural
networks

The architecture

 A convolution layer followed by a pooling layer

 One or several fully connected layer

 The pair (convolutional, pooling) may be repeated several
times

 Several convolutional layers can be used in parallel

A lot of different architectures are now available

 1998, LeNet 6 layers, 68K parameters

 2012, Alexnet 8 layers, 60M parameters

 2014, Inception, 22 layers, 2M parameters

 2014, VCGG net, 16 layers, 138M parameters

 2015, ResNet 152 layer, 60M parameters

Same image datasets

 Imagenet 14M images, 1000 categories

 CIFAR 100, 60K images, 100 categories

 MNIST 60K handwritten characters

 ….

Current convolutional architettures are over-parametrized!!!

 More parameters than images

 What are the consequences of this?

Current DNNs

219

220

7

Current convolutional architettures are over-parametrized!!!

 Learning is simple, not much affected by local minima

 this is expected

 Generalization may be also good

 this is achieved only applying a number of tricks

• Pooling

• Weight decay

• Use validation to stop

• Dataset aumentantion

• Images can be rotated, scaled, ….

Current DNNs

An experiment Zang, et al.

 with CIFAR 10 dataset (60K images, 10 classes)

 Using Inception (1.6M par)

 What does it happen without the usual "tricks"?

 The networks easily reaches 100% on train set,

 but of course, the generalization is low

 What does it happen if the labels are replaced by random
labels? And what if also the image pixels are shuffled,
randomly permuted…

 The networks easily still reaches 100% on train set,

 but of course, now the performance on test set is that of a
random classifier

Let us have a look at

https://arxiv.org/abs/1611.03530

Current DNNs

221

222

8

Approximation capability ver 1.0

 DNNs are universal approximators
(with mild constraints on architecture)

 An example of the proof,

 Given a target function t,

 the first three layers of the DNN approximate t

 remaining layers just copy the ouptut of the third
layer

Approximation capability of
DNNs

Approximation capability ver 2.0: the idea
“(using the same of amount of resources),
deep architectures can implement more complex
functions than shallow networks”

A new tool was required to evaluate the complexity of
the implemented classifiers

 The following complexity measures were not useful

 Number of neurons

 VC-dimension

 Approximation capability

The role of depth in DNNs
Bianchini,
Scarselli

223

224

9

 N: a neural network

 f: the function implemented by the network

 SN: the set of the non-negative patterns, i.e.

SN={x| fN(x)≥0}

The idea

 To measure the topological complexity of the set SN

 It is reasonable when N is used for classification purposes

The underlining idea

 Black regions represent the non-negative patterns, i.e,, SN

 Can you say which set is more complex in each couple?

Topological complexity:
an intuitive viewpoint

VS VS

VS VS

225

226

10

Betti numbers

 used to distinguish spaces with different topological properties

 for any subset S ⊂ Rn, there exist n Betti numbers,

b0(S), b1(S), ….. bn-1(S)

Formally

 bk(S): is rank of the k–th homology group of the space S.

Intuitively

 b0(S): is the number of connected components of the set S

 bk(S): counts the number of (k+1)–dimensional holes in S

Betti numbers: a topological
concept

 In topology, the sum of the Betti numbers

B(S)=k bk(S),

is used to evaluate the complexity of the set S

 We will measure the complexity of the function
fN implemented by a neural network N by

B(SN)=k bk(SN),

where of SN={x| fN(x)≥0}.

The proposed measure of
complexity

227

228

11

Betti numbers: examples

VS VS

VS VS

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=2 b1(S)=1
B(S)=3

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=2
B(S)=3

b0(S)=1 b1(S)=1
b2(S)=1

B(S)=3

b0(S)=1 b1(S)=2
b0(S)=1

B(S)=4

The considered networks

 feedforwad layered perceptrons

 with sigmoidal (ridge) activation functions in the
hidden layers and linear in the output layer

Upper and lower bounds on B(SN) varying

 The number of hidden layers l

 The number of hidden units h

 The number of inputs n

 The activation functions: tanh, arctan, polynmial of
degree r, generic sigmoids

The study

(k wk xk)

229

230

12

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1) (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2 (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ((h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

W.r.t. the number of inputs n, the complexity

 always grows exponentially

Analysis of the results

231

232

13

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1) (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2 (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ((h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

w.r.t. the number of hidden neurons h, the complexity

 grows polynomially, for shallow networks

 grows exponentially, for deep networks

Analysis of the results

233

234

14

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1) (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2 (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ((h-1) /n)n n h
many sigmoid 2l-1 l,h
many polynomial 2l-1 l,h

 l: number of hidden layers
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

Summing up

 with the same amount of resources, deep networks can
realize more complex classifiers than shallow networks!!

Remarks

 This does mean that all the functions can be better
approximated by deep networks!!

 Only some functions with particular symmetries will have
benefict from being approximated by deep networks

Analysis of the results

235

236

15

Notice that

 A layered network implements a function

fN=g1◦g2 .. ◦ gl ◦ t

 gk is the function implemented by layer k

 ◦ is the function composition operator

 If fN=g1◦ t, then fN behaves as t on all the regions A1,.. ,As

where g1(Ak)= Rn

 With several layers, the number of regions Ak such that
gl(…g1(Ak))= Rn can grow exponentially

Deep networks can replicate more easily the same behavior
on different regions of the input domain

An intuitive explanation of the
advantage of deep architectures

An example of the advantages
of deep networks

𝑔(𝑥) = 1 − 𝑥 2

𝑡 𝑥 = 1 − 𝑥ଵ
ଶ, 1 − 𝑥ଶ

ଶ

t g◦t

g◦g◦g◦tg◦g◦t

237

238

16

Graph Neural Networks
(GNNs)

The main idea

 graphs are an extension of sequences

 Recurrent networks operate on
sequences of data

 graphs are irregular grids

 Convolutional networks operate on grids
of data

 GNNs a class neural network models that
extend both recurrent networks and
convolutional networks and operates on
graphs

v3v1

v4

v6

v7

v5

v2

v1 v2
v3 v3

v1 v2
v3 v3

v5 v6
v7 v8

v9 v10
v11 v12

Graphs: they are a general tool
to represent data

Patterns with their relationships, examples of applications for GNNs

 Social networks

 Nodes represent users (may have attached information)

 Links represent friendships (may have attached information)

 Protein networks

 Node stand for proteins (may have attached information)

 Edges denote their possible interaction (may have attached
information)

 Molecules

 Nodes stand for atoms (may have attached information)

 Edges stand for physically close atoms or those atoms having
an atomic interaction (may have attached information)

 ….

239

240

17

Graph Neural Networks
(GNNs)

 The first model to be named GNN has been proposed here in
Siena, but that before that there were a lot of works on neural
networks for graphs, particularly in Pisa, Florence and Siena (e.g.
Sperduti, Frasconi, we in Siena,….) but also elsewhere in Europe

 Currently, several new GNN models have been proposed.

 In the following, first I introduce the original model and then I
explain how this has been modified

GNNs can be defined by
extending recurrent
networks

Remember the unfolding network

 I recurrent networks, we have a transaction network fw and an
output network gw

 A copy of fw, gw for each time instance, connected in sequence

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

fw gw
z(t)

x(t)

z(t)

o(t)

x(0) x(1) x(2) x(3) x(T)

241

242

18

GNNs can be defined by
extending recurrent networks

We still have two neural networks

 An aggregation funtion fw for
computing a node state z

 A gw for computing a node output

 Then, we unfold the graph and we get
the encoding network

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2

z3

Input graph
Encoding network

x1
x1

x4

x4

x3

x3

x2

x2

fw

gw

z

o

GNNs can be defined by
extending recurrent networks

For a general graph, we can construct the
encoding network
 The xi are the feature vectors attached to nodes (the

node information)

 The edges represent the relationship between patterns

 The oi are the network output

 The zi are an internal state representation for the node

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2

z3

Input graph
Encoding network

x1
x1

x4

x4

x3

x3

x2

x2

243

244

19

245

GNNs: computing the states

 The state zn of a node are computed by
combining the information on node
neigborhood

 In the original model, we used

where hw is a three layer
neural network

 but, several other networks are now used ..
back on this later

f Node state zv

x3

x2

x4

x6

x7

x5

The neighborhood
of this node

𝑧௩ = ∑ 𝑛 → 𝑣ℎw(𝑥, 𝑧)

246

GNNs: computing the outptut

 The state on of a node are computed from
the states zn

 In the original model, we used

where gw is a three layer neural network

 but, several other networks are now used
and sometime is just not used…. back on
this later

g Node output ov

𝑧௩ = 𝑔w(𝑥௩, 𝑧௩)

245

246

20

Computing GNN outputs

The enconding network is cyclic … how are outputs computed?

1. Set initial states z(t)=0

2. Repeat

3. activate units f to compute
new states z(t+1)

4. Until z(t) do not change any more

5. activate units g to compute outputs

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2
z3

Encoding network

x1
x4

x3x2

Computing GNN outputs

The enconding network is cyclic …

 Does the forward phase always converge?

 Does the forward phase always converge to
the same state despite the initial state?

Yes

 The original GNNs adopt a mechanism based
on contraction systems

247

248

21

A mathematical point of view

Consider the whole encoding network as
adynamic system/system of equation does the
system always converge/ does the system has a
unique solution?

 Yes, provided that it is a contraction, i.e, if the
norm of the Jacobian is smaller than

𝜕𝐹(𝑙, 𝑍)

𝜕𝑍
< 1

 The original GNNs adopt a mechanism which
keep the Jacobian small during learning

𝑍(𝑡) = 𝐹(𝑋, 𝑍(𝑡))

Computing GNN gradient

Based on unfolding of encoding network

 The encoding network is unfolded through time

 The result is a feedforward network equivalent to
the encoding network

 The gradient is computed on the unfolding using
backpropagation through time algorithm

249

250

22

The unfolding of the
encoding network

fw

fw fw

z2

gw
o3gwo2

gwo1

x2

z1

z1z1
z2

z2

z3

x1

x3

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

The encoding
network

x1

x2

x3

Graph

The unfolding network

The unfolding network defines how the output of the
GNN is computed: In the original GNN model

 In each time layer there is a copy of fw for each
node of the graph

 Inside the layers, the fw are not connected,
through the layers the fw are connected according
to the graph connectivity

 The parameters of the fw are shared among the
layers

 The number of layers depend on the onvergence
time I

 By changing some of those assumptions, we get
the modern GNNs

251

252

23

Modern GNNs
 Fix the number of layers

 Use different parameter set on each layer

 You may also want to remove the direct input to
the internal layers

 Now, this looks like a deep network

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

Modern GNN: Graph convolutional
neural networks (GCN)

 Graph convolutional neural networks is a well
know example of modern GNNs

 In GCNs, the aggregation function is

𝑧𝑣(𝑘) = 𝑟𝑒𝑙𝑢(
𝑧𝑣 𝑘 − 1 𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

)

→௩
Kipft, Welling

253

254

24

Are GNNs sort of convolutional
neural networks?

 In convolutional networks, a kernel is applied to each
point v of an image (a grid) or of the previous layer

 The oputput of the kernel is

 In GNN a function fw is used to combine the
contribution of the neigboors

𝑧𝑛 = 𝑟𝑒𝑙𝑢(𝑥𝑣𝑊𝑛 − 𝑣)

௩ []

𝑧௩ = ∑ 𝑛 → 𝑣ℎw(𝑥, 𝑧)

Are GNNs sort of convolutional
neural networks?

 In convolutional neural networks, the kernel is
applied on each pixel of the input image

 In GNNs, the aggregation function is applied on
each node.

 In convolutional neural networks, several kernels are
used to obtained several feature map on each layer

 In GNNs, the aggregation function produced a
state whose dimension is larger than one: you
can think this as a set of aggregation functions

255

256

25

About GNN computational
capability

 Which applications on graph can GNNs implement?

 Let us consider a function that takes in input a
graph G and return a real output (G,n) for some
node n

 Answer 1.0

The orignal GNN model, under mild assumptions on
(G,n), can approximate, any function in probability

About GNN computational
capability

Intuitive idea of the proof

 We adopt the same reasoning we used for recurrent
networks

 If the aggregation function fw can store into the
state z the graph,

 then the output function gw can decode the state
and produce any desired ouput from z

 But with graphs, there is a difference that it is worth
to discuss

257

258

26

Unfolding tree

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n

Unfolding tree

 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 ….

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n

x1

x2

x3

x3

x1

x1

x2
x1 x3x3

x1

Z1(0)=

Z1(1)=
Z1(2)= Input

graph
x2

259

260

27

The consequences of the
locality of computation

Two copies of the same node or two different nodes with the same features?

 The unfolding trees may contain copies of the same nodes due to cycles
and the bidirectional links

 The aggregation function can aggregate the information from neighboors,
but, since it is a local activity, the aggregation may not able to distinguish
two copies of the same node from two different nodes with the same
features

262

The unfolding equivalence

Unfolding tree

n The unfolding tree Tv
d is the tree obtained by unfolding the graph starting in v up

to d levels

Unfolding equivalence

n two nodes are unfolding equivalent nv if Tn
d =Tv

d holds for every d

a b

a c

a

ba

ab caa

: : : :

a

ba

ab caa

: : : :

c

b

caa

: :

equivalent

non-equivalent

261

262

28

263

Functions that preserve the
unfolding equivalence

Functions that preserve the unfolding equivalence

 A function : GNRm preserves the unfolding equivalence if

nv implies (G,n)=(G,n)

Example

 a function that preserves the unfolding equivalence has the some output on
a uniform graph where all the node has the same labels

4
44

4 4
4

4
44

4 4
4 Black nodes = output 1

White nodes = output 0
it preserves the
unfolding
equivalences it does not preserve

unfolding equivalences

264

Thus, what GNNs cannot
approximate

GNNs and the unfolding equivalence

 GNNs can approximate only the functions that preserve the unfolding

equivalence: this result applies also to modern GNNs!

 such a behaviour may not be a limitation

 two concepts having the same labels and the same relationships with the

other concepts provide the same information:

 why those concepts should be distinguished

 with an appropriate modification of the graphs, a functions may preserve the

unfolding equivalence

 f.i. when all the labels of the input graph are distinct labels

263

264

29

265

A funny experiment about GNN
approximation properties

A GNN produces the same result on a uniform graphs but …

 if a noise is introduced into the labels, the nodes become distinguishable

and, in theory, GNNs can implement any function

 is it possible to learn a GNN that return -1 for a half of the nodes (white

nodes) and 1 for the other half (black nodes)?

2

10

4

8

7

5

a random label

output is 1

output is 0

266

A funny experiment on GNN
approximation properties

300 random uniform graphs

 random labels

 the error was measured by the difference between the desired number of
black nodes on those obtained by the GNN

 results were compared with those obtained by random process and a
feedforward neural network

265

266

30

Which aggregation function?
Advanced question

 We would like to get some details about the aggregation and the

output function we should use

Main idea by Xu et al

 exploit Weisfeiler-Lehman test of isomorphism

 An algorithm that produces iteratively a coding of the graph

an allows to recognized whether two graphs are isomorph

 GNNs are sufficiently powerfull when they can implement

Weisfeiler-Lehman test of isomorphism

Which aggregation function?
Xu et al.

 Let us assume that fw is decomposed as

 and that there is a function that combine all the states of a

graph to produce an output for the graph

(G)=(zv1(T),….,)

(by this schema, we capture most of modern GNNs

𝑧௩(𝑡) = 𝑧௩ 𝑡 − 1 , 𝑧𝑛 𝑡 − 1 : 𝑣 → 𝑛

267

268

31

Which aggregation function?
Xu et al.

 Let us assume that fw is decomposed as

(G)=(zv1(T),….,)

 If aggregates recursively the children features

 , and are injective

 then the GNN produces an embedding of the graphs

on which we can apply the Weisfeiler-Lehman test to

recognize whether the graphs are isomorphic or not

𝑧௩(𝑡) = 𝑧௩ 𝑡 − 1 , 𝑧𝑛 𝑡 − 1 : 𝑣 → 𝑛

Which aggregation function?

 If aggregates recursively the children features

 then, the aggregation function should have at least two layers

(one hidden layer)

 but most modern GNNs exploit just a single layer, e.g. in

CGN

 The advantage is in the fact that using a single layer

makes the architecture simpler, faster, and improves

generalization

 A big advantage for applications with a lot of features

𝑧௩(𝑡) = 𝑧௩ 𝑡 − 1 , 𝑧𝑛 𝑡 − 1 : 𝑣 → 𝑛

𝑧𝑣(𝑘) = 𝑟𝑒𝑙𝑢(
𝑧𝑣 𝑘 − 1 𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

)

→௩

269

270

32

Which aggregation function?

(G)=(zv1(T),….,)

 , and are injective

 But some modern GNNs exploit AVERAGE, MAX. In this

case, ,/ are not injective. e.g. in CGN

𝑧௩(𝑡) = 𝑧௩ 𝑡 − 1 , 𝑧𝑛 𝑡 − 1 : 𝑣 → 𝑛

𝑧𝑣(𝑘) = 𝑟𝑒𝑙𝑢(
𝑧𝑣 𝑘 − 1 𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

)

→௩

Which aggregation function?
An example

 the average (normalization) may be useful to avoid that the

gradient become smaller during back propagation

 but with average, you cannot count, e.g. the number of children

of a nodes

 If your target application is to recognize the users that have a

lot of friends in a a social network, using AVERAGE in your

aggragation function is nota good idea!

271

272

33

Generalization in GNNs

 From a theoretical view point, there are few results

generalization in GNNs

 One for the old GNN model (Scarselli, Tsoi, et al)

• Based on Vapnik-Chernovenkis

• The bounds are similar to the of other networks

• Surprisingly, the length of unfolding in time does not play

any role: this may be due to converge of the GNN model

 One for modern GNNs (Garg et al.)

• Based on Rademacher complexity (not studied here)

• The bound depend on the lenth of unfolding

• Similar to that or recurrent networks

274

Bound on VCD dimension of
the orginal GNNs

Activation Bound

Graphs (GNNs and non–positional RecNNs)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Sequences (recurrent networks)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Vectors (multialyer neural networks)

Polynomial O(p log(p))

Tanh, logsig, atan O(p4)

p=number of
paramters

N=number of
graph nodes

273

274

34

275

Bound on Rademacher
complexity of some modern
GNNs

GNNs RNNs

C<1/d
O

ௗ

 O

C=1/d

O
ௗ

 O

C>1/d

O
ௗ

 O

d=brancing factor
r=state dimension
L=depth
m=sample size
γ= margin used in
the margine loss

C = a sort of
Lipschitz constant
for aggregation

Generalization in GNNs in
practice

 Depending on the application, the generalization in GNNs is

difficult to control

 Test distribution must be same as training distribution both

for node features and node connectivity

 For complex applications, a lot of data may be required

275

276

35

Bibliography

 Auer, P., Herbster, M., & Warmuth, M. K. (1996). Exponentially
many local minima for single neurons. In Advances in neural
information processing systems (pp. 316-322).

 Baldi, P., & Hornik, K. (1989). Neural networks and principal
component analysis: Learning from examples without local
minima. Neural networks, 2(1), 53-58.

 Bartlett, P. L. (1998). The sample complexity of pattern
classification with neural networks: the size of the weights is
more important than the size of the network. IEEE transactions
on Information Theory, 44(2), 525-536.

Bibliography

 Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-
term dependencies with gradient descent is difficult. IEEE
transactions on neural networks, 5(2), 157-166.

 Bianchini, M., Gori, M., & Maggini, M. (1994). On the problem of
local minima in recurrent neural networks. IEEE Transactions on
Neural Networks, 5(2), 167-177.

 Bianchini, M., & Gori, M. (1996). Optimal learning in artificial
neural networks: A review of theoretical results.
Neurocomputing, 13(2-4), 313-346.

 Bianchini, M., & Scarselli, F. (2014). On the complexity of neural
network classifiers: A comparison between shallow and deep
architectures. IEEE transactions on neural networks and
learning systems, 25(8), 1553-1565.

 Barron, A. R. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions on
Information theory, 39(3), 930-945.

277

278

36

Bibliography

 Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function. Mathematics of control, signals and systems,
2(4), 303-314.

 Hammer, B. (2000). On the approximation capability of recurrent
neural networks. Neurocomputing, 31(1-4), 107-123.

 Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural
networks, 2(5), 359-366.

 Funahashi, K. I. (1989). On the approximate realization of
continuous mappings by neural networks. Neural networks, 2(3),
183-192.

 Garg, Vikas K., Stefanie Jegelka, and Tommi Jaakkola.
"Generalization and representational limits of graph neural
networks.", ICML, 2020.

Bibliography

 Gori, Marco, and Alberto Tesi. "On the problem of local minima
in backpropagation." IEEE Transactions on Pattern Analysis and
Machine Intelligence 14.1 (1992): 76-86.

 Gori, M., & Scarselli, F. (1998). Are multilayer perceptrons
adequate for pattern recognition and verification?. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20(11), 1121-1132.

 Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning
machine: theory and applications. Neurocomputing, 70(1-3),
489-501.

 Kipf, Thomas N., and Max Welling. "Semi-supervised
classification with graph convolutional networks." ICML, (2016).

 Judd, J. S. (1990). Neural network design and the complexity of
learning. MIT press.

279

280

37

Bibliography
 Lawrence, S., Tsoi, A. C., & Giles, C. L. (1996, June).

Local minima and generalization. In Neural Networks,
1996., IEEE International Conference on (Vol. 1, pp. 371-
376). IEEE.

 Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J.
(2001). Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies.

 F Scarselli, AC Tsoi, M Hagenbuchner, The Vapnik–
Chervonenkis dimension of graph and recursive neural
networks, Neural Networks 108, 248-259

 F Scarselli, M Gori, AC Tsoi, M Hagenbuchner, G
Monfardini, Computational capabilities of graph neural
networks,IEEE Transactions on Neural Networks 20 (1),
81-102, 90, 2008

 F Scarselli, M Gori, AC Tsoi, M Hagenbuchner, G
Monfardini, The graph neural network model, IEEE
Transactions on Neural Networks 20 (1), 61-80

Bibliography

 Shawe-Taylor, J. (1993). Symmetries and discriminability in
feedforward network architectures. IEEE Transactions on Neural
Networks, 4(5), 816-826.

 Yu, X. H., & Chen, G. A. (1995). On the local minima free
condition of backpropagation learning. IEEE Transactions on
Neural Networks, 6(5), 1300-1303.

 Vapnik, V. N. (1999). An overview of statistical learning theory.
IEEE transactions on neural networks, 10(5), 988-999.

 Xu, Keyulu, et al. "How powerful are graph neural
networks?." ICLR,2019

 Zhang, Chiyuan, et al. "Understanding deep learning requires
rethinking generalization." arXiv preprint arXiv:1611.03530
(2016).

281

282

38

Thank you for your attention!

Lecture of July 21th
 The lecture will start at 10.00 am

 We will have a test

 Written

 Close answers

 About 1hour time to complete

 The test is mandatory for students of Smart Computing PhD
who want to have to pass an exam to have the credits,

 but it is open to anybody

 After the test, we will discuss the responses, thus this will be
used as a course summarization

283

284

