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Deep neural networks 
(DNNs)

Deep neural networks 
(DNNs)

Definition ver 1.0

 Just networks with many layers

Up to 14 year ago, researchers rarely used deep networks

 at that time, no theoretical advantage of  DNNs

 Deep networks are universal approximators:

• Obvious proof: two layers can approximates any 
function, the remaining layers can implement the 
identity function

 No clear advantage in generalization result for deep 
networks

 Experimental results (on simple application) had  not shown 
any advantage from DNNs

 DNNs suffered from long-term dependence problem!!
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Deep neural networks

Then researchers started to suspect that

 Very difficult problems may require the use of several layers: 
computer vision, language understanding,…

 New learning methods may have to be used to overcome the 
long-term dependence problem:

 Unsupervised learning for hidden layer?

 Stacked supervised learning?

 A lot of parameters ….

Intuitive evidences

 Each layer produces a more abstract representation of inputs 
simplifying difficult problems in an iterative way

 Animal brains are layered … , it is not a casuality

Current DNNs are much more 
complex than old DNNs 
Current DNNs exploits a lot of peculiarities

 Different types of layers

 Weight sharing

 Some neurons share the same weights

 Modularization

 A sub-module of the network is applied on 
different subset of the inputs

 particular activation functions

 Rectifier, drop out, max out, …  
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An example of DNNs: 
convolutional neural networks
Convolutional neural networks

 For image classification

 Originally used for handwritten digit recognition

 Currently, the best tools for object recognition sin 
images are based on evolutions of convolutional 
neural networks 

The layers of a convolutional network 

 Convolutional layers

 Pooling layers

 Fully connected layers

Convolutional neural networks: 
convolutional layer

Kernel filters in image processing

 Filter kernels are matrices, which can be applied to an image 
by convolution  

Edge Detection Blur

 By convolution with a 3x3 matrix M, the pixels of each 3x3 
window are multiplied by M

 A convolutional layer is almost equivalent to the application of 
a kernel whose parameters are trained!!

0 1 0
1 −4 1
0 1 0

1 1 1
1 1 1
1 1 1
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Convolutional neural networks: 
convolutional layer

Convolutional layers

 A neuron of a convolutional layer 
implements a kernel 

 The neuron is connected to 
a window (receptive field) of the original image 
(f.i., a 3x3(x3) square )

 The kernel matrix is defined by the weights of the 
connections

 The kernel is convoluted over the input

• There is a neuron for each window receptive field

 All the neurons share the same weight sets

Convolutional neural networks: 
convolutional layer

 A convolutional layer has the dimension
of the input image (width and height) 

 Intuitively, convolutional layers extract
low level features from the input image
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Convolutional neural networks: 
pooling layer

Pooling layers

 Each neuron of a pooling layer summarize the result of a  
small window of the image 
(f.i., a 2x2 receptive fields in the previous layer)

 Summarization can be by taking maximum, a random value, 
…

 Pooling layers decrease the size of the features (decrease 
width and height)

 Intuitively, pooling layers are used to simplify the problem by 
reducing the features to be considered

Convolutional neural networks: 
fully connected layer

Fully connected layers

 Common layers in which each neurons connected to all the 
neurons of the previous layer

 Intuitively, fully connected layers allow to combine and reason 
about the extracted features in order to take the final decision
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Convolutional neural 
networks

The architecture

 A convolution layer followed by a pooling layer

 One or several fully connected layer

 The pair (convolutional, pooling) may be repeated several 
times

 Several convolutional layers can be used in parallel

A lot of different architectures are now available

 1998, LeNet 6 layers, 68K parameters

 2012, Alexnet 8 layers, 60M parameters

 2014, Inception, 22 layers, 2M parameters

 2014, VCGG net, 16 layers, 138M parameters

 2015, ResNet 152 layer, 60M parameters

Same image datasets

 Imagenet 14M images, 1000 categories

 CIFAR 100, 60K images, 100 categories

 MNIST 60K handwritten characters

 ….

Current convolutional architettures are over-parametrized!!!

 More parameters than images

 What are the consequences of this?

Current DNNs
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Current convolutional architettures are over-parametrized!!!

 Learning is simple, not much affected by local minima 

 this is expected

 Generalization may be also good

 this is achieved only applying a number of tricks

• Pooling

• Weight decay

• Use validation to stop

• Dataset aumentantion

• Images can be rotated, scaled, ….

Current DNNs

An experiment Zang, et al.

 with CIFAR 10 dataset (60K images, 10 classes)

 Using Inception (1.6M par)

 What does it happen without the usual "tricks"?

 The networks easily reaches 100% on train set,

 but of course, the generalization is low

 What does it happen if the labels are replaced by random 
labels? And what if also the image pixels are shuffled, 
randomly permuted…

 The networks easily still reaches 100% on train set,

 but of course, now the performance on test set is that of a 
random classifier

Let us have a look at

https://arxiv.org/abs/1611.03530

Current DNNs
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Approximation capability ver 1.0

 DNNs are universal approximators
(with mild constraints on architecture)

 An example of the proof, 

 Given a target function t, 

 the first three layers of the DNN approximate t

 remaining layers just copy the ouptut of the third
layer

Approximation capability of 
DNNs

Approximation capability ver 2.0: the idea 
“(using the same of amount of resources), 
deep architectures can implement more complex 
functions than shallow networks”

A new tool was required to evaluate the complexity of 
the implemented classifiers

 The following complexity measures were not useful

 Number of neurons

 VC-dimension 

 Approximation capability 

The role of depth in DNNs
Bianchini,
Scarselli
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 N: a neural network

 f: the function implemented by the network

 SN: the set of the non-negative patterns, i.e. 

SN={x| fN(x)≥0} 

The idea 

 To measure the topological complexity of  the set SN

 It is reasonable when N is used for classification purposes

The underlining idea

 Black regions represent the non-negative patterns, i.e,, SN

 Can you say which set is more complex in each couple? 

Topological complexity: 
an intuitive viewpoint

VS VS

VS VS
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Betti numbers

 used to distinguish spaces with different topological properties 

 for any subset S ⊂ Rn, there exist n Betti numbers, 

b0(S), b1(S), ….. bn-1(S)

Formally

 bk(S): is rank of the k–th homology group of the space S.

Intuitively

 b0(S): is the number of connected components of the set S

 bk(S): counts the number of (k+1)–dimensional holes in S

Betti numbers: a topological 
concept

 In topology, the sum of the Betti numbers 

B(S)=k bk(S),

is used to evaluate the complexity of the set S

 We will measure the complexity of  the function 
fN implemented by a neural network N by 

B(SN)=k bk(SN),

where of SN={x| fN(x)≥0}.

The proposed measure of 
complexity
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Betti numbers: examples

VS VS

VS VS

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=2 b1(S)=1
B(S)=3

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=2
B(S)=3

b0(S)=1 b1(S)=1 
b2(S)=1

B(S)=3

b0(S)=1 b1(S)=2
b0(S)=1

B(S)=4

The considered networks

 feedforwad layered perceptrons

 with sigmoidal (ridge) activation functions in the 
hidden layers and linear in the output layer

Upper and lower bounds on B(SN) varying

 The number of hidden layers l

 The number of hidden units h

 The number of inputs n

 The activation functions: tanh, arctan, polynmial of 
degree r, generic sigmoids

The study

(k wk xk)
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The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ( (h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers 
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

W.r.t. the number of inputs n, the complexity 

 always grows exponentially

Analysis of the results
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The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ( (h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers 
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

w.r.t. the number of hidden neurons h, the complexity 

 grows polynomially, for shallow networks

 grows exponentially, for deep networks

Analysis of the results
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The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ( (h-1) /n)n n h
many sigmoid 2l-1 l,h
many polynomial 2l-1 l,h

 l: number of hidden layers 
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

Summing up

 with the same amount of resources, deep networks can 
realize more complex classifiers than shallow networks!!

Remarks

 This does mean that all the functions can be better
approximated by deep networks!!

 Only some functions with particular symmetries will have
benefict from being approximated by deep networks

Analysis of the results
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Notice that

 A layered network implements a function 

fN=g1◦g2 .. ◦ gl ◦ t

 gk is the function implemented by layer k

 ◦ is the function composition operator

 If fN=g1◦ t, then fN behaves as t on all the regions A1,.. ,As

where g1(Ak)= Rn 

 With several layers, the number of regions Ak such that  
gl(…g1(Ak))= Rn can grow exponentially

Deep networks can replicate more easily the same behavior 
on different regions of the input domain

An intuitive explanation of the 
advantage of deep architectures

An example of the advantages 
of deep networks

𝑔(𝑥) = 1 − 𝑥 2

𝑡 𝑥 = 1 − 𝑥ଵ
ଶ, 1 − 𝑥ଶ

ଶ

t g◦t

g◦g◦g◦tg◦g◦t
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Graph Neural Networks 
(GNNs)

The main idea

 graphs are an extension of sequences

 Recurrent networks operate on 
sequences of data

 graphs are irregular grids

 Convolutional networks operate on grids 
of data

 GNNs a class neural network models that 
extend both recurrent networks and 
convolutional networks and operates on 
graphs

v3v1

v4

v6

v7

v5

v2

v1 v2
v3 v3

v1 v2
v3 v3

v5 v6
v7 v8

v9 v10
v11 v12

Graphs: they are a general tool 
to represent data

Patterns with their relationships, examples of applications for GNNs

 Social networks

 Nodes represent users (may have attached information)

 Links represent friendships (may have attached information)

 Protein networks

 Node stand for proteins (may have attached information)

 Edges denote their possible interaction (may have attached 
information)

 Molecules

 Nodes stand for atoms (may have attached information)

 Edges stand for physically close atoms or those atoms having 
an atomic interaction (may have attached information)

 ….
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Graph Neural Networks 
(GNNs)

 The first model to be named GNN has been proposed here in 
Siena, but that before that there were a lot of works on neural 
networks for graphs, particularly in Pisa, Florence and Siena (e.g. 
Sperduti, Frasconi, we in Siena,….) but also elsewhere in Europe

 Currently, several new GNN models have been proposed.

 In the following, first I introduce the original model and then I 
explain   how this  has been modified

GNNs can be defined by 
extending recurrent
networks

Remember the unfolding network

 I recurrent networks, we have a transaction network fw and an 
output network gw

 A copy of fw, gw for each time instance, connected in sequence

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

fw gw
z(t)

x(t)

z(t)

o(t)

x(0) x(1) x(2) x(3) x(T)
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GNNs can be defined by 
extending recurrent networks

We still have two neural networks

 An aggregation funtion fw for 
computing a node state z

 A gw for computing a node output

 Then, we unfold the graph and we get
the encoding network

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2

z3

Input graph
Encoding network

x1
x1

x4

x4

x3

x3

x2

x2

fw

gw

z

o

GNNs can be defined by 
extending recurrent networks

For a general graph, we can construct the 
encoding network
 The xi are the feature vectors attached to nodes (the 

node information)

 The edges represent the relationship between patterns

 The oi are the network output

 The zi are an internal state representation for the node

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2

z3

Input graph
Encoding network

x1
x1

x4

x4

x3

x3

x2

x2
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245

GNNs: computing the states

 The state zn of a node are computed by 
combining the information on node
neigborhood

 In the original model, we used

where hw is a three layer
neural network

 but, several other networks are now used .. 
back on this later

f Node state zv

x3

x2

x4

x6

x7

x5

The neighborhood 
of this  node

𝑧௩ = ∑ 𝑛 → 𝑣ℎw(𝑥௡, 𝑧௡)

246

GNNs: computing the outptut

 The state on of a node are computed from 
the states zn

 In the original model, we used

where gw is a three layer neural network

 but, several other networks are now used
and sometime is just not used…. back on 
this later

g Node output ov

𝑧௩ = 𝑔w(𝑥௩, 𝑧௩)
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Computing GNN outputs

The enconding network is cyclic … how are outputs computed?

1. Set initial states z(t)=0 

2. Repeat

3. activate units f to compute
new states z(t+1)  

4. Until z(t) do not change any more 

5. activate units g to compute outputs

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2
z3

Encoding network

x1
x4

x3x2

Computing GNN outputs

The enconding network is cyclic …

 Does the forward phase always converge?

 Does the forward phase always converge to 
the same state despite the initial state?

Yes

 The original GNNs adopt a mechanism based
on contraction systems 
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A mathematical point of view

Consider the whole encoding network as 
adynamic system/system of equation  does the 
system always converge/ does the system has a 
unique solution?

 Yes, provided that it is a contraction, i.e, if the 
norm of the Jacobian is smaller than 

𝜕𝐹(𝑙, 𝑍)

𝜕𝑍
< 1

 The original GNNs adopt a mechanism which 
keep the Jacobian small during learning

𝑍(𝑡) = 𝐹(𝑋, 𝑍(𝑡))  

Computing GNN gradient

Based on unfolding of encoding network 

 The encoding network is unfolded through time

 The result is a feedforward network equivalent to 
the encoding network

 The gradient is computed on the unfolding using 
backpropagation through time algorithm
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The unfolding of  the 
encoding network

fw

fw fw

z2

gw
o3gwo2

gwo1

x2

z1

z1z1
z2

z2

z3

x1

x3

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

The encoding
network

x1 

x2

x3

Graph

The unfolding network

The unfolding network defines how the output of the 
GNN is computed: In the original GNN model

 In each time layer there is a copy of fw for each 
node of the graph

 Inside the layers, the fw are not connected, 
through the layers the fw are connected according 
to the graph connectivity

 The parameters of the fw are shared among the 
layers

 The number of layers depend on the onvergence
time I

 By changing some of those assumptions, we get 
the modern GNNs
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Modern GNNs
 Fix the number of layers

 Use different parameter set on each layer

 You may also want to remove the direct input to 
the internal layers

 Now, this looks like a deep network

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

Modern GNN: Graph convolutional
neural networks (GCN)

 Graph convolutional neural networks is a well 
know example of modern GNNs

 In GCNs, the aggregation function is

𝑧𝑣(𝑘) = ෍ 𝑟𝑒𝑙𝑢(
𝑧𝑣 𝑘 − 1  𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

 
)

௡→௩
Kipft, Welling
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Are GNNs sort of convolutional
neural networks?

 In convolutional networks, a kernel is applied to each
point v of an image (a grid) or of the previous layer

 The oputput of the kernel is

 In GNN a function fw is used to combine the 
contribution of the neigboors

𝑧𝑛 = ෍ 𝑟𝑒𝑙𝑢(𝑥𝑣𝑊𝑛 − 𝑣)

௩ ௜௡ ௡௘[௡]

𝑧௩ = ∑ 𝑛 → 𝑣ℎw(𝑥௡, 𝑧௡)

Are GNNs sort of convolutional
neural networks?

 In convolutional neural networks, the kernel is
applied on each pixel of the input image

 In GNNs, the aggregation function is applied on 
each node. 

 In convolutional neural networks, several kernels are 
used to obtained several feature map on each layer

 In GNNs, the aggregation function produced a 
state whose dimension is larger than one: you
can think this as a set of aggregation functions
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About GNN computational
capability

 Which applications on graph can GNNs implement?

 Let us consider a function  that takes in input a 
graph G and return a real output (G,n) for some 
node n

 Answer 1.0 

The orignal GNN model, under mild assumptions on 
(G,n), can approximate, any function  in probability

About GNN computational
capability

Intuitive idea of the proof

 We adopt the same reasoning we used for recurrent
networks

 If the aggregation function fw can store into the 
state z the graph, 

 then the output function gw can decode the state 
and produce any desired ouput from z

 But with graphs, there is a difference that it is worth
to discuss
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Unfolding tree

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 ....

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n 

Unfolding tree

 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 ….

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n 

x1 

x2

x3

x3

x1

x1

x2
x1 x3x3

x1

Z1(0)=

Z1(1)=
Z1(2)= Input 

graph
x2
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The consequences of the 
locality of computation

Two copies of the same node or two different nodes with the same features?

 The unfolding trees may contain copies of the same nodes due to cycles
and the bidirectional links

 The aggregation function can aggregate the information from neighboors, 
but, since it is a local activity, the aggregation may not able to distinguish
two copies of the same node from  two different nodes with the same
features

262

The unfolding equivalence

Unfolding tree

n The unfolding tree Tv
d is the tree obtained by unfolding the graph starting in v up 

to d levels

Unfolding equivalence

n two nodes are unfolding equivalent  nv if Tn
d =Tv

d holds for every  d

a b

a c

a

ba

ab caa

: : : :

a

ba

ab caa

: : : :

c

b

caa

: :

equivalent

non-equivalent
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263

Functions that preserve the 
unfolding equivalence

Functions that preserve the unfolding equivalence

 A function : GNRm preserves the unfolding equivalence if

nv implies (G,n)=(G,n)

Example

 a function that preserves the unfolding equivalence has the some output on 
a uniform graph where all the node has the same labels

4
44

4 4
4

4
44

4 4
4 Black nodes = output 1

White nodes = output 0
it preserves the
unfolding
equivalences it does not preserve 

unfolding equivalences

264

Thus, what GNNs cannot 
approximate

GNNs and the unfolding equivalence

 GNNs can approximate only the functions that preserve the unfolding 

equivalence: this result applies also to modern GNNs!

 such a behaviour may not be a limitation 

 two concepts having the same labels and the same relationships with the 

other concepts provide the same information:

 why those concepts should be distinguished

 with an appropriate modification of the graphs, a functions may preserve the 

unfolding equivalence

 f.i. when all the labels of the input graph are distinct labels
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A funny experiment about GNN 
approximation properties

A GNN produces the same result on a uniform graphs but … 

 if a noise is introduced into the labels, the nodes become distinguishable 

and, in theory, GNNs can implement any function 

 is it possible to learn a GNN that return -1 for a half of the nodes (white 

nodes) and 1 for the other half (black nodes)?

2

10

4

8

7

5

a random label

output is 1

output is 0

266

A funny experiment on GNN 
approximation properties

300 random uniform graphs 

 random labels 

 the error was measured by the difference between the desired number of 
black nodes on those obtained by the GNN

 results were compared with those obtained by random process and a 
feedforward neural network
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Which aggregation function?
Advanced question

 We would like to get some details about the aggregation and the 

output function we should use

Main idea by Xu et al

 exploit Weisfeiler-Lehman test of isomorphism 

 An algorithm that produces iteratively a coding of the graph 

an allows to recognized whether two graphs are isomorph

 GNNs are sufficiently powerfull when they can implement 

Weisfeiler-Lehman test of isomorphism 

Which aggregation function?
Xu et al.

 Let us assume that fw is decomposed as

 and that there is a function  that combine all the states of a 

graph to produce an output for the graph

(G)=(zv1(T),….,)

(by this schema, we capture most of modern GNNs

𝑧௩(𝑡) =  𝑧௩ 𝑡 − 1 ,  𝑧𝑛 𝑡 − 1 : 𝑣 → 𝑛
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Which aggregation function?
Xu et al.

 Let us assume that fw is decomposed as

(G)=(zv1(T),….,)

 If  aggregates recursively the children features

 , and  are injective

 then the GNN produces an embedding of the graphs 

on which we can apply the Weisfeiler-Lehman test to 

recognize whether the graphs are isomorphic or not 

𝑧௩(𝑡) =  𝑧௩ 𝑡 − 1 ,  𝑧𝑛 𝑡 − 1 :  𝑣 → 𝑛

Which aggregation function?

 If  aggregates recursively the children features

 then, the aggregation function should have at least two  layers 

(one hidden layer)

 but most modern GNNs exploit just a single layer, e.g. in 

CGN

 The advantage is in the fact that using a single layer 

makes the architecture simpler, faster, and improves 

generalization 

 A big advantage for applications with a lot of features

𝑧௩(𝑡) =  𝑧௩ 𝑡 − 1 ,  𝑧𝑛 𝑡 − 1 :  𝑣 → 𝑛

𝑧𝑣(𝑘) = ෍ 𝑟𝑒𝑙𝑢(
𝑧𝑣 𝑘 − 1  𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

 
)

௡→௩
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Which aggregation function?

(G)=(zv1(T),….,)

 , and  are injective

 But some modern GNNs exploit AVERAGE, MAX.  In this 

case, ,/ are not injective. e.g. in CGN

𝑧௩(𝑡) =  𝑧௩ 𝑡 − 1 ,  𝑧𝑛 𝑡 − 1 :  𝑣 → 𝑛

𝑧𝑣(𝑘) = ෍ 𝑟𝑒𝑙𝑢(
𝑧𝑣 𝑘 − 1  𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

 
)

௡→௩

Which aggregation function?
An example

 the average (normalization) may be useful to avoid that the 

gradient become smaller during back propagation 

 but with  average, you cannot count, e.g. the number of children 

of a nodes

 If your target application is to recognize the users that have a 

lot of friends in a a social network, using AVERAGE in your 

aggragation function is nota good idea! 
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Generalization in GNNs

 From a theoretical view point, there are few results 

generalization in GNNs

 One for the old GNN model (Scarselli, Tsoi, et al)

• Based on Vapnik-Chernovenkis

• The bounds are similar to the of  other networks

• Surprisingly, the length of unfolding in time does not play 

any role: this may be due to converge of the GNN model

 One for modern GNNs (Garg et al.)

• Based on Rademacher complexity (not studied here)

• The bound depend on the lenth of unfolding

• Similar to that or recurrent networks
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Bound on VCD dimension of 
the orginal GNNs

Activation Bound

Graphs (GNNs and non–positional RecNNs)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Sequences (recurrent networks)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Vectors (multialyer neural networks)

Polynomial O(p log(p) )

Tanh, logsig, atan O(p4)

p=number of 
paramters

N=number of
graph nodes

273

274



34

275

Bound on Rademacher 
complexity of some modern 
GNNs

GNNs RNNs

C<1/d
O

௥ௗ

௠ O
௥

௠
C=1/d

O
௥ௗ௅

௠ O
௥௅

௠
C>1/d

O
௥ௗ ௥௅

௠ O
௥ ௥௅

௠

d=brancing factor
r=state dimension
L=depth
m=sample size
γ= margin used in 
the margine loss

C = a sort of 
Lipschitz constant
for aggregation

Generalization in GNNs in 
practice

 Depending on the application, the generalization in GNNs is 

difficult to control

 Test distribution must be same as training distribution both 

for node features and node connectivity

 For complex applications, a lot of data may be required
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Thank you for your attention!

Lecture of July 21th
 The lecture will start at 10.00 am

 We will have a test

 Written

 Close answers

 About 1hour time to complete

 The test is mandatory for students of Smart Computing PhD 
who want to have to pass an exam to have the credits,

 but it is open to anybody

 After the test, we will discuss the responses, thus this will be 
used as a course summarization
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