
1

Generalization capability

Pratical question:
generalization capability
After training, how does the FNN will perform on
new patterns from a test set?

Generalization

 Iet us measure this with the performance of a
model f on a test set T

f= (L) is produced by a learning algorithm
using a train set L

109

110

2

Pratical question:
generalization capability

Interesting questions

 what is the predicted performance of f on test set T?

 This question is related to

 which model should we choose?

 which learning algorithm should we choose?

 When learning should be stop?

Answer 1.0

 no answer is possible without assumptions on training
algorithm and network architecture

Measuring generalization
capabilty requires assumptions

How well will this model generalize on novel patterns?

Train set
patterns

The model

111

112

3

Measuring generalization
capabilty requires assumptions
Very well!!!

Train set
patterns

The model

Test set
patterns

Measuring generalization
capabilty requires assumptions
Very bad!!!

Train set
patterns

The model

Test set
patterns

113

114

4

Measuring generalization
capabilty requires assumptions
Another model?

Train set
patterns

The model

Test set
patterns

Measuring generalization
capabilty requires assumptions

Another model? …. It does not generalize well in this case!

Train set
patterns

The model

Test set
patterns

115

116

5

Measuring generalization
capabilty requires assumptions
Which model is best to have a good generalization?

Train set
patterns

Model 1

Model 2

No free lunch theorem

Intuitive version

 Without constraints on the considered problem, all the
learning algorithms may show the same generalization error!!

Formally

 A training algorithm which produces a model f:X->Y , using a
train set

 X= a fine set of inputs, Y= a finite set of outputs

 Train set L={(xi,ti) | xi X, tiY}

 Test set T ={xi | xi X}

 The target function t:X->Y

 Error on test set 𝑒𝑡𝑒𝑠𝑡 = ∑ 𝐿(𝑡 𝑥𝑖 , 𝑓 𝑥𝑖)௫ ் for some error
function L

If the target function t is uniformly sampled, for any learning

algorithm mean(etest) is constant

117

118

6

No free lunch theorem

It means that without assumptions

 The learned model which is better on a problem is worse
on another:

 If A1 is better than A2 on certain kind of problems,
there must be another kind of problems where A2 is
better than A1

 averaged over all the problems, both algorithms are
equally good.

 Even a random learning algorithm performs as well as the
other algorithms

 Generalization is not possible without a (often implicit) bias
of the algorithm

Measuring generalization
capabilty requires assumptions

Assumption 1: data distribution

 The data on test set (working environment) are drawn from the
same distribution as the data in train set

 Not obvious in real applications

 It means that the pair pattern-targets must be drawn from the
same distributions

119

120

7

Measuring generalization
capabilty requires assumptions

Occam's razor (law of parsimony):

 the simplest explanation is usually the correct one

Assumption 2:
 the model that produces the best generalization is the simplest

(among those that classifies correctly the train set)

Such an assumption is about real life applications!

Next step … how do we measure simplicity/complexity?

Measuring simplicity

Better model 1, which is the simplest

Train set
patterns

Model 1

Model 2

121

122

8

Measuring simplicity

Intuitive ideas: the complexity of a parametric model
depends on

 the number of roots the model can have

 the number of maxima/minima the model can have

 the number of patterns the model can interpolate

 the number of ways a set of patterns can be
classified

 …

Measuring simplicity: Vapnik-
Chervonenkis dimension (VCD)

Intuitive definition of “shatter”

 A classifier 𝑓𝑤 is said to shatter a set of patterns
𝑥1, . . 𝑥𝑘, if by changing the parameters we can
classify the patterns in any possible way

Formal definition of “shatter”

 for any possible assigmament 𝑡1, . . 𝑡𝑘, ti{0,1}, there
is a set of parameters w such that

𝑓𝑤 𝑥𝑖 > 0 if ti=1

𝑓𝑤 𝑥𝑖 < 0 if ti=0

123

124

9

Examples of shattering

Example 1

 A linear function fw(x)= w1x+w0 can shatter the set
{1,2}... (and any set of 2 reals)

Example 2

 A polynomial fw(x)= w3x3+w2x2+w1x+w0 can shatter
the set {0,1,2,3}... (and any set of 4 reals)

Example 3

 The function fw(x)= tanh(w1x+w0) can shatter the set
{1,2}... (and any set of 2 reals)

Example 4

 The function fw(x)= sign(sin(w1x+w0)) can shatter
any set in R!!!

Vapnick-Chervonenkis
dimension (VCD)

Intuitive definition

 The VCD dimension of classifier 𝑓𝑤 is the
dimension of the largest pattern set on which we
can implement any classifier

Formal definition

𝑉𝐶𝐷 𝑓𝑤 = max

𝑋 , X is a set shattered by fw

125

126

10

Intuitive ideas about VCD

VCD provides lower bounds on

 the maximum number of roots
(models with a single input)

 the maximum number of minima/maxima
(models with a single input)

 the maximum number of regions partitioned by the
model
(models with many inputs)

127

128

11

Examples of VCD

Examples

 linear functions fw(x)= w1x+w0

VCD(fw)=2

 Polynomials of order k, fw(x)= wkxk+…+w1x+w0

VCD(fw)=k+1

 Neural networks with k neurons, single hidden layer,
ReLU activation function

VCD(fw)=k+1

VCD of neural networks

Neural networks with p parameters, bounds for the order of
growth of VCD(fw)

 FNNs with step activation function

Upper bound: O(p log p),

Lower bound o(p log p)

 FNNs with piecewise polynomial activation function

Upper bound: O(p2),

Lower bound o(p2)

 FNNs with, tanh, logsig, atan activation function

Upper bound: O(p4) … this may be overestimated

Lower bound o(p2)

129

130

12

VCD … the obvious general
rule
 For a general neural network model, smaller number of

neurons/parameters/feature/levels.... have a smaller VCD

 But consider that different architectures cannot be directly
compared using the number of
neurons/parameters/feature/levels.... since the architecture
affect the VCD

VCD and test error

Vapnik proved that

 the problem is to learn a binary classifier fw
 V is VC dimension of fw

 Mean train error 𝑒𝑡𝑟𝑎𝑖𝑛 =
ଵ

ே
∑ 𝑡𝑖 − 𝑓𝑤(𝑥𝑖)ே

ୀଵ

 Mean test error 𝑒𝑡𝑒𝑠𝑡 =
ଵ

ே
∑ 𝑡𝑖

ഥ − 𝑓𝑤(𝑥𝑖ഥ)ேଶ
ୀଵ

 0<<1

 Train and test patterns (and targets) are drawn by the same
distribution

Then

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1)− log(భష

ర
)

ே

131

132

13

VCD and test error

Vapnik proved that (Vapnik 1989)

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1) −log(భష

ర
)

ே

 The larger the number of train samples N, the smaller the
generalization error

 Overfitting behaviour when training with few examples

VCD and test error

Vapnik proved that (Vapnik 1989)

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1) −log(భష

ర
)

ே

 The larger VD dimension V, the larger generalization error

 Complex models produce worse generalization

133

134

14

VCD and test error

It has been proved also the converse

 When VCD is large then the generalization probability is large!!

 If VCD is infinitive, then it may be impossible to learn a model
with bounded generalization error !!!

 Can you guess why?

Infinitive VCD

The function fw,b(x) =sin(w x+b),

 It has infinitive VCD

 Suppose, you want to learn a target function t
t(x)>0 for x<1 and t(x) for x>0,

then training with the pattern in the figure you expect to obtain
the function f=sin(x/2+ /2)* *

* *

135

136

15

Infinitive VCD

But your training algorithm cal also produce

f=sin(4(x/2+ /2))

Yes, you can add more training patterns to avoid this, but …

* *

* *
Infinitive VCD

…. this is a never end story

 In general, using architectures/activation functions with
infinitive VCD is not a good idea in machine learning!!

 or, at leat, we do not know how to manage them!!

* *

* *

**

**

137

138

16

Generalization capablity in
practice

In practice

 Suppose that you have a set of architectures that satisfies your
purpose from the approximation and learning point of view and
you want to chose the one that give you the generalization,
what to do?

 The VCD allows to estimate the error on test, but the VCD
cannot be used in practice, since the bounds are too raw

Alternatives for choosing architectures, algorithms, ….

 Predict the perfomance on test set (by validation)

 Keeping weight small

 This includes Support Vector Machine …. not a matter of
this course

 Pooling

Validation by random
subsampling

Let D be the available dataset

1. Divide D randomly into a train T and a validation subset V

2. Train the model on T

3. Evaluate the mode on the validation set N

4. Repeat k times

5. Calculate the average error rate

139

140

17

Validation k-fold cross
validation

Let D be the available dataset

1. Divide D randomly into a train T1,..,Tk subsets

2. For i=1 to k

Train the model on all the set except Ti

Evaluate the model on Ti

3. Calculate the average error rate

Validation k-fold cross
validation

141

142

18

Validation: why does it
work?

Why does it work?

 Validation just allows to experimentally predict the error on test
set

 We must assume that validation set is drawn from the same
distribution of test and train set

Validation: what is it useful
for ?
 To compare different models (neural networks, Bayesian

models, …)

 To compare different architectures (number of layers, number
of neurons, …)

 Decide when to stop learning

 ….

143

144

19

The role of weight sizes in
neural networks

Does weight size affect generalization?

 network with small weights produce smooth
function

 smooth functions look simpler than non-smooth
ones

Notice

 Networks with small weights are universal
approximators ….

 Can you prove this?

The role of weight sizes in
neural networks

A neural network a single layer and different weights sizes
(w=0.3, 0.4, 0.5)

145

146

20

VCD and weight size

An extended version of VC dimension (Bartlet)

 Usual mean test error 𝑒𝑡𝑒𝑠𝑡 =
ଵ

ே
∑ 𝑡𝑖

ഥ − 𝑓𝑤(𝑥𝑖ഥ)ேଶ
ୀଵ

 Error on train set
(those patterns for which the output is small are errors)

etrain
 =

ଵ

ே
∑ 𝑑(𝑡𝑖

, 𝑓𝑤(𝑥𝑖)) ே
ୀଵ ,

𝑑(𝑡𝑖
 ,

𝑓𝑤(𝑥𝑖)) =1 if 𝑡𝑖𝑓𝑤(𝑥𝑖) , 𝑑(𝑡𝑖
 ,

𝑓𝑤(𝑥𝑖))=0 otherwise

 V() fat-shattering dimension

 V() i is the maximum dimension of a set shattered with error
smaller than

VCD and weight size
An approximated version of VC dimension (Bartlet)

 P
ቌ

𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛
 +

2
V(/16) ln(యరಿ

ೇ(/16)
)log(578N) +ln(ర

భష)

ே

ቍ

 The bound has similar properties w.r.t those of VC,

 The larger V() the worse the generalization

 even if

 𝑒𝑡𝑟𝑎𝑖𝑛
 is larger than 𝑒𝑡𝑟𝑎𝑖𝑛

 V() is larger than V

147

148

21

VCD and weight size

Bartlet proved that

 Neural network with sigmoidal activation function, having output in
[-M/2,M/2] and module of derivative smaller than

 Module of input smaller than B

 L layers

 Weights bounded by

𝑉() ≤
ସଶ

ଶ

ெ

ଶ(ିଵ)

2 (ାଵ)𝑙𝑜𝑔 3ିଵ 𝐿 − 1 ! (2𝑛 − 1) 𝑟ଶ

 The smaller the weights, the smaller the fat-shattering dimension
𝐕() !!

Weight dimension

Keeping weight small

Early stopping

 Initialize the weights to small values

 Train the network

 stop when error on validation increases

Validation
error

Train
error

Stop here

149

150

22

Keeping weight small

Penalty (weight decay)

 Add penalty on a weight to error

𝑒𝑡𝑟𝑎𝑖𝑛 =
1

𝑁
 𝑡𝑖 − 𝑓𝑤(𝑥𝑖) + 𝑝(𝑤)

ே

ୀଵ

where

𝑝 𝑤 = ∑ 𝑤𝑖
ଶ

Notice that
𝜕𝑝(𝑤)

𝜕𝑤𝑖

= −2wi

Weight
decay

Keeping weight small

Constraint on neuron weights

 For each neuron k, activate a constraint when the input
weight is larger than a given maximum

𝑝𝑘(𝑤) = ൞
 𝑤𝑖𝑘

ଶ − 𝑀

𝑖𝑓 𝑤𝑖𝑘
ଶ > 𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

151

152

23

Pooling layers

 Neurons of a layer are grouped in subset

 For each pattern, only a fraction of the neurons in a
group are activated

 The output of the other neurons is not considered

 The active neurons an a group are selected by

 Taking the max (maxout)

 Taking a random set (dropout)

Pooling layers

Pool 1

Pool 2

Trained
weights

Fixed
weights

Select by
• dropout,
• maxout,

153

154

24

Pooling layers

 Pooling layers reduce the number of parameters and
neurons

 Pooling layers reduce VC dimension

Other explanations

 Early stopping helps because it predicts the test set
performance

 Weight decay disactivate some of the weights

 Pooling removes similar features

 …

155

156

25

Putting everything together:
approximation, learning, and
generalization, the global picture
You have a set of architectures, you want to chose the bestone
from all point of views: approximation, learning and
generalization

Antagonist goals

 Larger models improve approximation and learning, but they
decrease generalization

 Larger weights improve approximation, but they decrease
generalization

 Larger trainset improve generalization, but it makes learning
more difficult

Approximation, learning,
generalization: the global picture

approximation learning generalization

Large train set worse better

Large weights better ? worse

Large model better better worse

157

158

26

Other constraints to considered
to select the architecture

Constraints from the considered problem

 There is a minimum dimension for the model

 In a practical application, the approximation (error)
cannot be smaller than a minimum

 Too small models cannot solve the problem as
desired

 There is a maximum amount of data available for training
and validation

 Collecting/labelling data is expensive, …

 The computation resources are bounded

 Dimension of train set and model dimension affect the
required computational resources

Why generalization may be
different from what expected
It is assumed that the patterns of train, validation, and test
sets are drawn from the same distribution

 The distribution is different in most of real life applications
(performance on test much worse than on
validation/train)

 Patterns in test may appear also in training
(performance on test better than expected, when a
lookup table is used)

 Often there are relationships between patterns

 Patterns are not independent

 Using relationships improve performance on test

159

160

27

Each problem/architecture is
a singleton

 But remember that the generalization/approximation/learning
capability depend in complex way on

 the model architecture
(the type, the number of weights/neurons, the size of the
weights), and also on

 the problem
(the type, the number of examples in train set)

 Thus expect that the rules in the previous slides work for
networks with the same architecture and a different number of
neurons/weights, but they may fail for different types of
architectures

 In the following part of the course, we are going to see how
the network architecture may play an important role in its
properties

Our analysis of generalization
does not include reliability

Reliability

 A measure of how much you can trust the prediction

 Very important in verification problems

 Generalization theory is not of help

 It tells you how many errors your model will do on the
whole test set

 It does tell you anything about the reliability of the
prediction on a single pattern

161

162

28

Reliability

 A measure of how much you can trust the prediction

 Very important in verification problems

 Common neural networks do not provide a reliability measure

 The prediction may be very unreliable for outliers!

 Separation surface is unreliable where there are no train
patterns

+

-
--

-

- --

-
- -+

+
+

+
+

+
+

+
+

+
+

Separation
surface

An outlier

Reliability in machine
learning
Predictive models (bayesian models, autoencoder)

 Model trainset distribution

 Predict the probability that a pattern is generated from the
same distribution as that of training set

 Good to recognize outliers

 Good for verification problems

Discriminative models (common neural networks, SVMs,..)

 Do not model trainset distribution

 Predict the most probable class (or targets)

 Good for classification problems

163

164

29

Autoencoders

 Input and output layer have the same number of
neurons n

 One (or many) hidden layer with k<n neurons

 The network is trained to copy input x to output fw(xi

n inputs
n outputs

k<n
hiddens

𝑒𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖 − 𝑓𝑤(𝑥𝑖) 2

Autoencoders: how they are
used

For verificaton

 During trainining, the autoencoder is trained to copy
input to output

 During test, we use (x-fw(x))2 as a measure of the
probability that x belong to the train set distribution

For classificaton into k classes

 During trainining, the k-th autoencoder is trained to copy
input to output using only positive patterns of each class

 Eventually error is changed to accommodate
negative examples

 During test, it is returned the class of the autoencoder
that obtains the smallest errror (x-fw(x))2

165

166

30

Autoencoders: how they are
used

For data generation

 After training, the decoder is feeded with some data. We
expect that it generate a value that resemble those in
the train set

Autoencoders: how they are
used

For feature dimension reduction

 During trainining, the autoencoder is trained to copy
input to ourput

 During test, the hidden node output is used as
compressed representation of the features

n inputs
n outputs

k<n
hiddens

Compressed
representaton

decoder
encoder

167

168

31

Autoencoders: why they
work

Why autoencoders work

 The autoencoder cannot approximate the identity
function

 The autoencoder are forced to compress the input
information into a smaller space

 The smaller the hidden layers, the larger the
compression

n inputs
n outputs

k<n
hiddens

Autoencoders: why they
work
 The function implemented by an autoencoder is

 An autoencoder implements a sort of non linear
version of PCA (Principal component analysis)

n inputs
n outputs

k<n
hiddens

𝑓 𝑥 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2

169

170

32

Autoencoders vs common
networks

It has been proved that (me … and Gori)

 The separation surfaces for autoencoders are
always closed
(provided that the number of hidden neurons is
smaller than the number of inputs)

 The separation surface of a FNN can be both
open and closed

Autoencoders vs common
networks

 A contour plot of an autoencoder

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

171

172

33

Autoencoders vs common
networks

The separation surface of a feedforward network
with 5 hiddens

Autoencoders vs common
networks

The separation surface of a feedforward network
with 5 hiddens

173

174

34

Autoencoders vs common
networks

Intuitively

 Autoencoders are advantageous for verification

 due to closed surface fact

 due to the fact that it is a predictve model

A modern architecture:
variational autoencoder

 Old autoencoders work only with one layer
encoders and one layer decoders

 In this way, the encoders and the decoders are
not universal approximators

 With more layers,

 surfaces may be open

 the identity function from input to output can be
implemented even if the hidden layer is smaller
then the input

• All the data is auto associated

175

176

35

A modern architecture:
variational autoencoder

 Variational autoencoders use encoders and decoders
with several layers,

 The enconder takes in input x and

 generates the parameters (mean , and variance
) of the distribution of latent hidden variable
p(z∣x)

 The decoder takes the variable z and generate x

p(z|x)

x x

A modern architecture:
variational autoencoder

 By assuming that hidden variables p(z∣x) have a
normal distribution, we limit the freedom of the
encoding and the decoding networks.

 We can use several layers

 Variational autoencoders are used to generate
images, etc

p(z|x)

x x

177

178

36

Recurrent neural networks

Recurrent neural networks
(RNNs)
Dynamical neural networks

 An internal state z(t) Rs

 A sequence of inputs x(t) Rn

 A sequence of outputs x(t) Rm

 A transition network 𝑓𝑤

 𝑥 𝑡 + 1 = 𝑓𝑤(𝑧 𝑡 , 𝑥 𝑡)

 An output network 𝑔𝑤

 𝑜 𝑡 = 𝑔𝑤(𝑧 𝑡)

fw gw
z(t)

x(t)

z(t)

o(t)

Feedforward
networks

179

180

37

Training recurrent neural
networks
The train set

 A pattern is a pair of sequences of inputs and desired
outputs

 𝐿 = {(�̅�, 𝑡̅)|�̅� = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , 𝑡̅ = 𝑡 1 , . . 𝑡(𝑇)}

Training recurrent neural
networks
Unfolding network

 A copy of fw, gw for each time instance, connected in sequence

The unfolding network is a feedforward network
(with shared weights)

 The unfolding network can be trained by standard
backpropagation
(just remember to accumulate gradients)

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

181

182

38

Approximation capability of
RNNs

RNN approximation ver 1.0

 given dynamical system, can it be approximately
simulated by a RNN?

Formally, is there a RNN that simulates the following?

 a transition function 𝑓̅

 an output function �̅�

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Approximation capability of
RNNs
Obvious answer

 Yes
Just take neural networks that approximate 𝑓̅

and �̅�

fw gw
z(t)

x(t)

z(t)

o(t)

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Target dynamic system
RNN

183

184

39

Simulating a dynamical
system
Obvious answer

 Yes
Just take neural networks that approximate 𝑓̅

and �̅�

But notice

 We implicitly assumed the state dimension is
known and you can design your network with
the same internal state dimension

 The transition and output networks must have
at least one hidden layer

 The sequences of outputs generated by the
two dynamical system may diverges with time

Approximation capability

An advanced question

 Let us consider a sequences of patterns 𝑥(𝑇) =
𝑥 0 , 𝑥 1 , … 𝑥 𝑇 and focus the attention on a function t that
returns an output t(𝑥(𝑇)) = 𝑜(𝑇)

 Can a RNN approximate t?

 Notice: no assumption is made on the existence of a dynamical
system able to implement t …. we are studying that

An intuitive answer

 Yes, provided that

1. The transition network can code the input sequences (or
all the relevant information) and store into the state z(t)

2. The output network can decode such a representation and
produce the output

 If the coding exists, the thesis is true by universal
approximation

185

186

40

Approximating sequences
 Yes, provided that

1. The transition network can code the input sequences (or all
the relevant information) and store into the state z(t)

Simple case: the dimension of the state must be large enough

 It must hold s > T*n

 just copy inputs to the state

The general case, s<T*n

 a set of integers v1, ..,vk can be coded with the real number
0.v1, ..vk

 E.g. 0,1234 is a coding of 1, 2, 3, 4

 a set of real number v1, ..,vk can be approximately coded with
the real number 0.[v1] ..[vk], where [.] is the rounding

 E.g. 0,1234 is a coding of 1.12, 2.15, 3.41, 4.32

Approximating sequences
It has been proved that (Hammer)

 Let us consider a function t that takes in input sequences of
patterns 𝑥(𝑇) = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 and returns an output
t(𝑥(𝑇)) = 𝑜(𝑇)

 t can be approximated by a RNN which is feeded with x(i)
and return o(i) for each i

 If t is measurable and the 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are reals,
then the approximation can be obtained in probability

 If t is continuous and the 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are integers,
then the approximation is w.r.t. sup norm

187

188

41

RNN approximation in
practice
 when s<<T*n, the coding function exists, but

 it is complex

 It is very sensible to noise

 .. so it is difficult to learn

 In real life tasks

 only a small part of the information in inputs is useful

 Inputs are recursively processed

 Inputs belong to a sub.mainfold

 … information to be stored is much smaller and a much
smaller state dimension is required

Learning capability of RNNs

Intuitively

 Known results recall that of feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 the matrix of the inputs x1(0), …, x1(T), x2(1)… x2(T),
… is full-rank

 Thus, the total number of time instances cannot larger
than input dimension

189

190

42

Learning capability of RNNs

Intuitively

 Known results recall that feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 The sequences are linearly separable

 The weights of links connecting states to states are
positive

Long-term dependencies

Intuitively

 It is difficult to learn a RNN when the at time T depends
on the input at time t and t<<T

Common explanation

 The gradient become smaller and smaller when
propagated through the layers of the unfolding network

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

191

192

43

Common explanation

Remember

 𝑒𝑤 𝑇 = 𝑙 − 𝑜𝑤(𝑇) ଶ

డ௪(்)

డ௫()
=

డ௪(்)

డ௭(்)

డ௭(்)

డ(்ିଵ)

డ௭(்ିଵ)

డ௭(்ିଶ)
… …

డ௭ ଵ

డ௫

The term
డ௭(௧ାଵ)

డ௭(௧)

 A sxs matrix measuring how the input state of fw affects its output

 When
డ௭(௧ାଵ)

డ௭(௧)
<1 and T is large

డ௪(்)

డ௫()
is close to 0

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Common explanation

డ௭(௧ାଵ)

డ(௧)
is small where the function fw is flat

 small weights

 saturated neurons

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

193

194

44

Long-term dependencies:
some experiments
Bengio, Frasconi, et alt.

 The problem: learning to latch

 An input sequence x(0)…x(T)

 Two classes to be reconignized which depend only on
x(0)

 The expected output at time T o(T)>0 for class A, o(t)<=
fo class B

 The network

 A RNN with a single hidden neuron

 =tanh

 z(t)=w (z(t-1))+x(t)

x(t) z(t)

Long-term dependencies:
some experiments

Bengio, Frasconi, et alt.

 The classification task is learned only for small T (T<20)

 Some tricks with learning algorithms improved only a few the
results

195

196

45

Long-term dependencies:
the theory

Bengio, Frasconi, et alt.

 .If w>1 then the system has two attracting stable states, a
positive z+, and a negative stable state z-

 Intuitively: the system is able to store some information
only if w>1

 This is true in general, if the weights are too small then
the RNN has only one stable point!!|!

 In this case, If z(0)>0, z(0) is large enough and |x(t)| not too
large then z(T)>0 (the converse hold if z(0)<0)

 Intuitively: the system resets the stored information when
the input is large or small enough

 The information storing is robust for small inputs

x(t) z(t)

Long-term dependencies:
the theory

Bengio, Frasconi, et alt.

 A more general network with any number of neurons

 z(t)=fw(z(t-1))+x(t)

 The system may have several attracting points

 There are regions close to those points where
డ௭(௧ାଵ)

డ௭(௧)
<1

 Those regions

 make information latching robust

 But if inputs do not move the state from an attracting

regions, then lim
்→ஶ

డ(்)

డ௫()
= 0

fw
x(t) z(t)

Actracting
regions

Stable states

197

198

46

Long-term dependencies:
other explanations
Loading problem is difficult with many inputs

 The learning algorithm is a search algorithm in network
space: with many inputs, the search space is large

 which are the inputs affecting the output?

Antagonist goals

 weights must be large to have several attracting regions:

 but large weights decrease generalization capability
and/or saturate sigmoids and/or make gradient oscillate

 There must exist regions where
డ௭(௧ାଵ)

డ௭(௧)
<1 holds to store

information in a robust way

 But
డ௭(௧ାଵ)

డ௭(௧)
<1 makes make gradient small

 Small regions are difficult to reach

Long short-term memory:
a solution

The idea

 keep
డ௭(௧ାଵ)

డ௭(௧)
equal to 1

 this makes the error signal
to remain close 1 through
several time steps

LSTM cell

 a neuron to store the state

 an input neurons

 a store neuron and a gate to decide whether to store input

 a forget neuron and a gate to decide whether to reset the
state

 An output neuron and gate to decide whether to output
the state

199

200

47

Long short-term memory

LSTM cell

 neurons use sum and sigmoidal activation

 gates use just product

State
neuron

Input
neuron

forget
neuron

output
neuronstore

neuron

input output

gates

Long short-term memory

The state

 f(t) is 0 to forget, it is 1 to remember

 i(t) is 1 to store input, it is 0 to skip

z(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

State
neuron

input output

z(t)

in(t)

f(t)

i(t)

Gates denote
products

201

202

48

Long short-term memory

Store, forget and output neurons

 They are standard neurons with sigmoidal activation
function and weights, e.g.

f(𝑡) = 𝜎 𝑤𝑧𝑧 𝑡 + 𝑤𝑥𝑥(𝑡)

input output

z(t)
x(t)

Long short-term memory

LSTM networks

 constructed connecting LSTM cell

 They can be mixed with standard neurons

 common architecture: a standard input layer, a hidden
layer of LSTM cells, a standard output layer

LSTM

LSTM

LSTM

203

204

49

Long short-term memory

LSTM

 can store input for hundreds/thousands of
instances

 Successfully applied in several application
domains, e.g. language translation

Long short-term memory:
why do they work?

Explanation ver 1.0

 When the forget gate is 1, then we have
డ௭(௧ାଵ)

డ௭(௧)
=1

𝑧(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

Another Explanation

 LSTM assumes that

 the problem can be solved by storing/forgetting
inputs/states

 The decision whether to store/forget is simple
(linearly separable, implementable by a single
layer net)

 RNN does not make any assumption

 LSTM are better than RNN if the assumption is
satisfied

 The search space is reduced!

205

206

50

Generalization capability of
RNNs
Intuitively

 VCD of RNNs can be studied by observing the unfolding
network

 However, such an assumption does not consider the
implications of the weight sharing

 Current results may suffer of this limitation

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Generalization capability of
RNNs
Neural networks with p parameters, T time steps, bounds for
the order of growth of VCD(fw)

 RNNs with piecewise polynomial activation function

Upper bound: O(Tp2),

Lower bound o(p2)

 RNNs with, tanh, logsig, atan activation function

Upper bound: O(T2p4)

Lower bound o(p4)

207

208

