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Generalization capability

Pratical question: 
generalization capability
After training, how does the FNN will perform  on 
new patterns from a test set?

Generalization

 Iet us measure this with the performance of a 
model f on a test set T

f= (L) is produced by a learning algorithm 
using a train set L
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Pratical question: 
generalization capability

Interesting questions 

 what is the predicted  performance of f on test set T?

 This question is related to

 which model should we choose?

 which learning algorithm should we choose?

 When learning should be stop?

Answer 1.0

 no answer is possible without assumptions on training 
algorithm and network architecture

Measuring generalization
capabilty requires assumptions

How well will this model generalize on novel patterns?

Train set
patterns

The model
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Measuring generalization
capabilty requires assumptions
Very well!!!

Train set
patterns

The model

Test set
patterns

Measuring generalization
capabilty requires assumptions
Very bad!!!

Train set
patterns

The model

Test set
patterns
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Measuring generalization
capabilty requires assumptions
Another model?

Train set
patterns

The model

Test set
patterns

Measuring generalization
capabilty requires assumptions

Another model? …. It does not generalize well in this case!

Train set
patterns

The model

Test set
patterns
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Measuring generalization
capabilty requires assumptions
Which model is best to  have a good generalization?

Train set
patterns

Model 1

Model 2

No free lunch theorem

Intuitive version

 Without constraints on the considered problem, all the 
learning algorithms may show the same generalization error!!

Formally

 A training algorithm which produces a model f:X->Y , using a 
train set

 X= a fine set of inputs, Y= a finite set of outputs 

 Train set L={(xi,ti) | xi X, tiY}

 Test set T ={xi | xi X}

 The target function t:X->Y

 Error on test set  𝑒𝑡𝑒𝑠𝑡 = ∑ 𝐿(𝑡 𝑥𝑖 , 𝑓 𝑥𝑖 )௫௜ ் for some error
function L

If the target function t is uniformly sampled, for any learning 

algorithm mean(etest) is constant
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No free lunch theorem

It means that without assumptions

 The learned model which is better on a problem is worse 
on another:

 If A1 is better than A2 on certain kind of problems, 
there must be another kind of problems where A2 is 
better than A1

 averaged over all the problems, both algorithms are 
equally good.

 Even a random learning algorithm performs as well as the 
other algorithms

 Generalization is not possible without a (often implicit) bias 
of the algorithm

Measuring generalization
capabilty requires assumptions

Assumption 1: data distribution 

 The data on test set (working environment) are drawn from the 
same distribution as the data in train set

 Not obvious in real applications

 It means that the pair pattern-targets must be drawn from the 
same distributions
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Measuring generalization
capabilty requires assumptions

Occam's razor (law of parsimony): 

 the simplest explanation is usually the correct one

Assumption 2:
 the model  that produces the best generalization is the simplest 

(among those that classifies correctly the train set)

Such an assumption is about real life applications!

Next step … how do we measure simplicity/complexity?

Measuring simplicity

Better model 1, which is the simplest

Train set
patterns

Model 1

Model 2
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Measuring simplicity

Intuitive ideas: the complexity of a parametric model 
depends on 

 the number of roots the model can have

 the number of maxima/minima the model can have

 the number of patterns the model can interpolate

 the number of ways a set of patterns can be 
classified

 …

Measuring simplicity: Vapnik-
Chervonenkis dimension (VCD)

Intuitive definition of “shatter”

 A classifier  𝑓𝑤 is said to shatter a set of patterns  
𝑥1, . . 𝑥𝑘, if  by changing the parameters we  can 
classify the patterns in any possible way 

Formal definition of “shatter”

 for any  possible assigmament 𝑡1, . . 𝑡𝑘, ti{0,1}, there 
is a set of parameters w such that

𝑓𝑤 𝑥𝑖 > 0 if ti=1

𝑓𝑤 𝑥𝑖 < 0 if ti=0

123

124



9

Examples of shattering

Example 1

 A linear function fw(x)= w1x+w0 can shatter the set 
{1,2}... (and any set of 2 reals) 

Example 2

 A polynomial fw(x)= w3x3+w2x2+w1x+w0 can shatter 
the set {0,1,2,3}... (and any set of 4 reals) 

Example 3

 The function fw(x)= tanh(w1x+w0 ) can shatter the set 
{1,2}... (and any set of 2 reals) 

Example 4

 The function fw(x)= sign(sin(w1x+w0 )) can shatter 
any set in R!!!

Vapnick-Chervonenkis
dimension (VCD)

Intuitive definition

 The VCD dimension of classifier  𝑓𝑤 is the 
dimension of the largest pattern set on which we 
can implement any classifier

Formal definition 

𝑉𝐶𝐷 𝑓𝑤 = max
௑

𝑋 , X is a set shattered by fw
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Intuitive ideas about VCD

VCD provides  lower bounds on

 the maximum number of roots
(models with a single input)

 the maximum number of minima/maxima
(models with a single input)

 the maximum number of regions partitioned by the 
model
(models with many inputs)
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Examples of VCD

Examples

 linear functions fw(x)= w1x+w0

VCD(fw)=2

 Polynomials of order k, fw(x)= wkxk+…+w1x+w0 

VCD(fw)=k+1

 Neural networks with k neurons, single hidden layer, 
ReLU activation function 

VCD(fw)=k+1

VCD of neural networks

Neural networks with p parameters, bounds for the order of 
growth of VCD(fw)

 FNNs with step activation function 

Upper bound: O(p log p),

Lower bound o(p log p)

 FNNs with piecewise polynomial activation function 

Upper bound: O(p2),

Lower bound o(p2)

 FNNs with, tanh, logsig, atan activation function 

Upper bound: O(p4)    … this may be overestimated

Lower bound o(p2)
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VCD … the obvious general 
rule
 For a general neural network model, smaller number of  

neurons/parameters/feature/levels.... have a smaller VCD

 But consider that different architectures cannot be directly 
compared using the number of 
neurons/parameters/feature/levels.... since the architecture 
affect the VCD

VCD and test error

Vapnik proved that 

 the problem is to learn a binary classifier fw
 V is VC dimension of fw

 Mean train error  𝑒𝑡𝑟𝑎𝑖𝑛 =
ଵ

ே
∑ 𝑡𝑖 − 𝑓𝑤(𝑥𝑖)ே

௜ୀଵ

 Mean test error  𝑒𝑡𝑒𝑠𝑡 =
ଵ

ே
∑ 𝑡𝑖

ഥ − 𝑓𝑤(𝑥𝑖ഥ )ேଶ
௜ୀଵ

 0<<1

 Train and test patterns (and targets) are drawn by the same 
distribution 

Then

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1)− log(భష

ర
)

ே
  
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VCD and test error

Vapnik proved that (Vapnik 1989)

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1) −log(భష

ర
)

ே
  

 The larger the number of train samples N, the smaller the 
generalization error 

 Overfitting behaviour when training with few examples

VCD and test error

Vapnik proved that (Vapnik 1989)

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1) −log(భష

ర
)

ே
  

 The larger VD dimension V, the larger generalization error 

 Complex models produce worse generalization
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VCD and test error

It has been proved also the converse 

 When VCD is large then the generalization probability is large!!

 If VCD is infinitive, then it may be impossible to learn a model 
with bounded generalization error !!! 

 Can you guess why?

Infinitive VCD

The function fw,b(x) =sin(w x+b),

 It  has infinitive VCD

 Suppose, you want to learn a target function t 
t(x)>0 for  x<1 and t(x) for x>0, 

then training with the pattern in the figure you expect to obtain 
the function f=sin( x/2+  /2)* *

* *
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Infinitive VCD

But your training algorithm cal also produce

f=sin(4( x/2+  /2))

Yes, you can add more training patterns to avoid this, but …

* *

* *
Infinitive VCD

…. this is a never end story

 In general, using architectures/activation functions with 
infinitive VCD is not a good idea in machine learning!!

 or, at leat,  we do not know how to manage them!! 

* *

* *

**

**
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Generalization capablity in 
practice

In practice

 Suppose that you have a set of architectures that satisfies your 
purpose from the approximation and learning point of view and 
you want to chose the one that give you the generalization, 
what to do?

 The VCD allows to estimate the error on test, but the VCD 
cannot be used in practice, since the bounds are too raw

Alternatives for choosing architectures, algorithms, ….

 Predict the perfomance on test set (by validation)

 Keeping weight small

 This includes Support Vector Machine …. not a matter of 
this course

 Pooling

Validation by random 
subsampling

Let D be the available dataset

1. Divide D randomly into a train T and a validation subset V

2. Train the model on T

3. Evaluate the mode on the validation set N 

4. Repeat k times

5. Calculate the average error rate
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Validation k-fold cross 
validation

Let D be the available dataset

1. Divide D randomly into a train T1,..,Tk subsets

2. For i=1 to k

Train the model on all the set except Ti

Evaluate the model on Ti

3. Calculate the average error rate

Validation k-fold cross 
validation
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Validation: why does it
work?

Why does it work?

 Validation just allows to experimentally predict the error on test 
set

 We must assume that validation set is drawn from the same
distribution of test and train set

Validation: what is it useful
for ?
 To compare different models (neural networks, Bayesian

models,  …)

 To compare different architectures (number of layers, number
of neurons, …)

 Decide when to stop learning

 ….
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The role of weight sizes in 
neural networks

Does weight size affect generalization?

 network with small weights produce smooth 
function

 smooth functions look simpler than non-smooth 
ones 

Notice

 Networks with small weights are universal 
approximators …. 

 Can you prove this?

The role of weight sizes in 
neural networks

A neural network a single layer and different weights sizes
(w=0.3, 0.4, 0.5)
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VCD and weight size

An extended version of VC dimension (Bartlet)

 Usual mean test error  𝑒𝑡𝑒𝑠𝑡 =
ଵ

ே
∑ 𝑡𝑖

ഥ − 𝑓𝑤(𝑥𝑖ഥ )ேଶ
௜ୀଵ

 Error on train set
( those patterns for which the output is small are errors)

etrain
 =

ଵ

ே
∑  𝑑(𝑡𝑖 

, 𝑓𝑤(𝑥𝑖)) ே
௜ୀଵ , 

𝑑(𝑡𝑖
 ,

𝑓𝑤(𝑥𝑖)) =1 if  𝑡𝑖𝑓𝑤(𝑥𝑖) ,   𝑑(𝑡𝑖
 ,

𝑓𝑤(𝑥𝑖))=0 otherwise 

 V()  fat-shattering dimension

 V() i is the maximum dimension of a set shattered with error 
smaller than 

VCD and weight size
An approximated version of VC dimension (Bartlet)

 P
ቌ

𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛
 +

2
V(/16) ln( యర೐ಿ

ೇ(/16)
)log(578N) +ln( ర

భష)

ே
  

ቍ


 The bound has similar properties w.r.t those of VC,

 The larger V() the worse the generalization

 even if

 𝑒𝑡𝑟𝑎𝑖𝑛
 is larger than 𝑒𝑡𝑟𝑎𝑖𝑛

 V() is larger than V
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VCD and weight size

Bartlet proved that 

 Neural network with sigmoidal activation function, having output in 
[-M/2,M/2] and module of derivative smaller than 

 Module of input smaller than B

 L layers

 Weights bounded by 

𝑉(  ) ≤  
ସ஻ଶ

ଶ

ெ



ଶ(௅ିଵ)

2 ௅(௅ାଵ)𝑙𝑜𝑔 3௅ିଵ 𝐿 − 1 ! (2𝑛 − 1) 𝑟ଶ  

 The smaller the weights, the smaller the fat-shattering dimension 
𝐕() !!

Weight dimension

Keeping weight small

Early stopping

 Initialize the weights to small values

 Train the network 

 stop when error on validation increases

Validation
error

Train
error

Stop here
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Keeping weight small

Penalty (weight decay)

 Add penalty on a weight to error

𝑒𝑡𝑟𝑎𝑖𝑛 =
1

𝑁
෍ 𝑡𝑖 − 𝑓𝑤(𝑥𝑖) + 𝑝(𝑤)

ே

௜ୀଵ

where

𝑝 𝑤 = ∑ 𝑤𝑖
ଶ

௜

Notice that
𝜕𝑝(𝑤)

𝜕𝑤𝑖

= −2wi

Weight
decay

Keeping weight small

Constraint on neuron weights

 For each neuron k, activate a constraint when the input 
weight is larger than a given maximum 

𝑝𝑘(𝑤) = ൞
෍ 𝑤𝑖𝑘

ଶ − 𝑀

௜

𝑖𝑓 ෍ 𝑤𝑖𝑘
ଶ > 𝑀

௜

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Pooling layers

 Neurons of a layer are grouped in subset

 For each pattern, only a fraction of the neurons in a 
group are activated

 The output of the other neurons is not considered

 The active neurons an a group are selected by

 Taking the max (maxout)

 Taking a random set (dropout)

Pooling layers

Pool 1

Pool 2

Trained
weights

Fixed
weights

Select by
• dropout,
• maxout, 

153

154



24

Pooling layers

 Pooling layers reduce the number of parameters and 
neurons

 Pooling layers reduce VC dimension

Other explanations

 Early stopping helps because it predicts the test set 
performance

 Weight decay disactivate some of the weights

 Pooling removes similar features

 …
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Putting everything together: 
approximation, learning, and 
generalization, the global picture
You have a set of architectures, you want to chose the bestone
from all point of views: approximation, learning and 
generalization

Antagonist goals

 Larger models improve approximation and learning, but they 
decrease generalization

 Larger weights improve approximation, but they decrease 
generalization

 Larger trainset improve generalization, but it makes learning 
more difficult

Approximation, learning, 
generalization: the global picture

approximation learning generalization

Large train set worse better

Large weights better ? worse

Large model better better worse
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Other constraints to considered 
to select the architecture

Constraints from the considered problem

 There is a minimum dimension for the model

 In a practical application, the  approximation (error) 
cannot be smaller than a minimum 

 Too small models cannot solve the problem as 
desired

 There is a maximum amount of data available for training 
and validation 

 Collecting/labelling data is expensive, …

 The computation resources are bounded

 Dimension of train set and model dimension affect the 
required computational resources

Why generalization may be 
different from what expected
It is assumed that the patterns of  train, validation, and test 
sets are drawn from the same distribution

 The distribution is different in most of real life applications 
(performance on test much worse than on 
validation/train)

 Patterns in test may appear also in training 
(performance on test better than expected, when a 
lookup table is used)

 Often there are relationships between patterns 

 Patterns are not independent

 Using relationships improve performance on test

159

160



27

Each problem/architecture is
a singleton

 But remember that the generalization/approximation/learning 
capability depend in complex way on

 the model architecture
(the type, the number of weights/neurons, the size of the 
weights),  and also on

 the problem
(the type, the number of examples in train set)

 Thus expect that the rules in the previous slides work for 
networks with the same architecture and a different number of 
neurons/weights, but they may fail for different types of 
architectures

 In the following part of the course, we are going to see how 
the network architecture may play an important role in its 
properties

Our analysis of generalization
does not include reliability

Reliability

 A measure of how much you can trust the prediction 

 Very important in verification problems

 Generalization theory is not of help

 It tells you how many errors your model will do on the 
whole test set

 It  does tell you anything about the reliability of the 
prediction on a single pattern
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Reliability 

 A measure of how much you can trust the prediction 

 Very important in verification problems

 Common neural networks do not provide a reliability measure

 The prediction may be very unreliable for outliers!

 Separation surface is unreliable where there are no train 
patterns

+

-
--

-

- --

-
- -+

+
+

+
+

+
+

+
+

+
+

Separation
surface

An outlier

Reliability in machine 
learning
Predictive models (bayesian models, autoencoder)

 Model trainset distribution 

 Predict the probability that a pattern is generated from the 
same distribution as that of training set

 Good to recognize outliers

 Good for verification problems 

Discriminative models (common neural networks, SVMs,..)

 Do not model trainset distribution

 Predict the most probable class (or targets)

 Good for classification problems
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Autoencoders

 Input and output layer have the same number of 
neurons n

 One (or many) hidden layer with k<n neurons

 The network is trained to copy input x to output fw(xi

n inputs
n outputs

k<n 
hiddens

𝑒𝑡𝑟𝑎𝑖𝑛 = ෍ 𝑥𝑖 − 𝑓𝑤(𝑥𝑖) 2

௜

Autoencoders: how they are 
used

For verificaton

 During trainining, the autoencoder is trained to copy 
input to output

 During test, we  use (x-fw(x))2 as a measure of the 
probability that x belong to the train set distribution

For classificaton into k classes

 During trainining, the k-th autoencoder is trained to copy 
input to output using only positive patterns of each class

 Eventually error is changed to accommodate 
negative examples

 During test, it is returned the class of the autoencoder
that obtains the smallest errror (x-fw(x))2
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Autoencoders: how they are 
used

For data generation

 After training, the decoder is feeded with some data. We 
expect that it generate a value that resemble those in 
the train set

Autoencoders: how they are 
used

For feature dimension reduction

 During trainining, the autoencoder is trained to copy 
input to ourput

 During test, the hidden node output is used as 
compressed representation of the features

n inputs
n outputs

k<n 
hiddens

Compressed
representaton

decoder
encoder
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Autoencoders: why they
work

Why autoencoders work

 The autoencoder cannot approximate the identity 
function

 The autoencoder are forced to compress the input 
information into a smaller space

 The smaller the hidden layers, the larger the 
compression

n inputs
n outputs

k<n 
hiddens

Autoencoders: why they
work
 The function implemented by an autoencoder is

 An autoencoder implements a sort of non  linear 
version of PCA (Principal component analysis)

n inputs
n outputs

k<n 
hiddens

𝑓 𝑥 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2
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Autoencoders vs common 
networks

It has been proved that  (me … and  Gori)

 The separation surfaces for autoencoders are 
always closed
(provided that the number of hidden neurons is 
smaller than the number of inputs)

 The separation surface of a FNN can be both 
open and closed

Autoencoders vs common 
networks

 A contour plot of an autoencoder

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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Autoencoders vs common 
networks

The separation surface of a feedforward network 
with 5 hiddens

Autoencoders vs common 
networks

The separation surface of a feedforward network 
with 5 hiddens
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Autoencoders vs common 
networks

Intuitively

 Autoencoders are advantageous for verification

 due to closed surface fact

 due to the fact that it is a predictve model

A modern architecture: 
variational autoencoder

 Old autoencoders work only with one layer
encoders and one layer decoders

 In this way, the encoders and the decoders are 
not universal approximators

 With more layers, 

 surfaces may be open

 the identity function from input to output can be 
implemented even if the hidden layer is smaller
then the input 

• All the data is auto associated
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A modern architecture: 
variational autoencoder

 Variational autoencoders use encoders and decoders 
with several layers, 

 The enconder takes in input x and 

 generates the parameters (mean , and variance
) of the distribution of latent hidden variable
p(z∣x)

 The decoder takes the variable z  and generate x

p(z|x)



x x

A modern architecture: 
variational autoencoder

 By assuming that hidden variables p(z∣x) have a 
normal distribution, we limit the freedom of the 
encoding and the decoding networks.

 We can use  several layers

 Variational autoencoders are used to generate 
images, etc

p(z|x)



x x
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Recurrent neural networks

Recurrent neural networks 
(RNNs)
Dynamical  neural networks

 An internal state z(t)  Rs

 A sequence of inputs x(t)  Rn

 A sequence of outputs x(t)  Rm

 A transition network 𝑓𝑤

 𝑥 𝑡 + 1 = 𝑓𝑤(𝑧 𝑡 , 𝑥 𝑡 )

 An output network 𝑔𝑤

 𝑜 𝑡 = 𝑔𝑤(𝑧 𝑡 )

fw gw
z(t)

x(t)

z(t)

o(t)

Feedforward
networks
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Training recurrent neural
networks
The train set

 A pattern is a pair of sequences of inputs and desired
outputs

 𝐿 = {(�̅�, 𝑡̅)|�̅� = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , 𝑡̅ = 𝑡 1 , . . 𝑡(𝑇)}

Training recurrent neural
networks
Unfolding network

 A copy of fw, gw for each time instance, connected in sequence

The unfolding network is a feedforward network 
(with shared weights)

 The unfolding network can be trained by standard 
backpropagation
(just remember to accumulate gradients)

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)
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Approximation capability of 
RNNs

RNN approximation ver 1.0

 given dynamical system, can it be approximately 
simulated by a RNN?

Formally, is there a RNN that simulates the following?

 a transition function 𝑓̅

 an output function �̅�

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Approximation capability of 
RNNs
Obvious answer

 Yes
Just take  neural networks that approximate 𝑓̅

and �̅�

fw gw
z(t)

x(t)

z(t)

o(t)

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Target dynamic system
RNN
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Simulating a dynamical
system
Obvious answer

 Yes
Just take  neural networks that approximate 𝑓̅

and �̅�

But notice

 We implicitly assumed the state dimension is
known and you can design your network with 
the same internal state dimension

 The transition and output networks must have 
at least  one hidden layer

 The sequences of outputs generated by the 
two dynamical system may diverges with time 

Approximation capability

An advanced question

 Let us consider a sequences of patterns 𝑥(𝑇) =
𝑥 0 , 𝑥 1 , … 𝑥 𝑇  and  focus the attention on a function t that 
returns an output t(𝑥(𝑇)) = 𝑜(𝑇)

 Can a RNN approximate t?

 Notice: no assumption is made on the existence of a dynamical 
system able to implement t …. we are studying that 

An intuitive answer

 Yes, provided that  

1. The transition network can code the input sequences (or 
all the relevant information) and store into the state z(t)

2. The output network can decode such a representation and 
produce the output 

 If the coding exists, the thesis is true by universal 
approximation
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Approximating sequences
 Yes, provided that  

1. The transition network can code the input sequences (or all 
the relevant information) and store into the state z(t)

Simple case: the dimension of the state must be large enough

 It must hold s > T*n

 just copy inputs to the state

The general case, s<T*n

 a set of integers v1, ..,vk can be coded with the real number 
0.v1, ..vk

 E.g. 0,1234 is a coding of 1, 2, 3, 4

 a set of real number v1, ..,vk can be approximately coded with 
the real number 0.[v1] ..[vk], where [.] is the rounding

 E.g. 0,1234 is a coding of 1.12,  2.15, 3.41,  4.32

Approximating sequences
It has been proved that (Hammer)

 Let us consider a function t that takes in input sequences of 
patterns 𝑥(𝑇) = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 and returns an output 
t(𝑥(𝑇)) = 𝑜(𝑇)

 t can be approximated by a RNN which is feeded with x(i) 
and return o(i) for each i

 If t is measurable and the 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are reals, 
then the approximation can be obtained in probability

 If t is continuous and  the 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are integers, 
then the approximation is w.r.t. sup norm
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RNN approximation in 
practice
 when s<<T*n, the coding function exists, but 

 it is complex 

 It is very sensible to noise

 .. so it is difficult to learn  

 In real life tasks

 only a small part of the information in inputs is useful

 Inputs are recursively processed

 Inputs belong to a sub.mainfold

 … information to be stored is much smaller and a much 
smaller state dimension is required 

Learning capability of RNNs

Intuitively

 Known results recall that of feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 the matrix of the inputs x1(0),  …, x1(T), x2(1)… x2(T), 
… is full-rank

 Thus, the total number of time instances cannot larger 
than input dimension
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Learning capability of RNNs

Intuitively

 Known results recall that feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 The sequences are linearly separable

 The weights of links connecting states to states are 
positive

Long-term dependencies

Intuitively

 It is difficult to learn a RNN when the at time T depends 
on the input at time t and t<<T

Common explanation

 The gradient become smaller and smaller when 
propagated through the layers of the unfolding network

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)
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Common explanation

Remember 

 𝑒𝑤 𝑇 = 𝑙 − 𝑜𝑤(𝑇) ଶ


డ௘௪(்)

డ௫(଴)
=

డ௘௪(்)

డ௭(்)

డ௭(்)

డ௓(்ିଵ)

డ௭(்ିଵ)

డ௭(்ିଶ)
… …

డ௭ ଵ

డ௫ ଴

The term 
డ௭(௧ାଵ)

డ௭(௧)

 A sxs matrix  measuring how the input state of fw affects its output

 When 
డ௭(௧ାଵ)

డ௭(௧)
<1 and T is large 

డ௘௪(்)

డ௫(଴)
is close to 0

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Common explanation

డ௭(௧ାଵ)

డ௓(௧)
is small where the function fw is flat 

 small weights 

 saturated neurons

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)
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Long-term dependencies: 
some experiments
Bengio, Frasconi, et alt.

 The problem: learning to latch

 An input sequence x(0)…x(T)

 Two classes to be reconignized which depend only on 
x(0)

 The expected output at time T o(T)>0 for class A, o(t)<= 
fo class B

 The network

 A RNN with a single hidden neuron

 =tanh

 z(t)=w (z(t-1))+x(t)


x(t) z(t)

Long-term dependencies: 
some experiments

Bengio, Frasconi, et alt.

 The classification task is learned only for small T (T<20)

 Some tricks with learning algorithms improved only a few the 
results
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Long-term dependencies: 
the theory

Bengio, Frasconi, et alt.

 .If w>1 then the system has two attracting stable states, a 
positive  z+, and a negative stable state z-

 Intuitively: the system is able to store some information 
only if w>1

 This is true in general, if the weights are too small then 
the RNN has only one stable point!!|!

 In this case, If  z(0)>0, z(0) is large enough and |x(t)| not too 
large then z(T)>0 (the converse hold if z(0)<0)

 Intuitively: the system resets the stored information when 
the input is large or small enough

 The information storing is robust for small inputs


x(t) z(t)

Long-term dependencies: 
the theory

Bengio, Frasconi, et alt.

 A more general network with any number of neurons

 z(t)=fw(z(t-1))+x(t)

 The system may have several attracting points

 There are regions close to those points where 
డ௭(௧ାଵ)

డ௭(௧)
<1

 Those regions 

 make information latching robust

 But if inputs do not move the state from an attracting 

regions, then lim
்→ஶ

డ௘(்)

డ௫(଴)
= 0

fw
x(t) z(t)

Actracting
regions

 

Stable states
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Long-term dependencies: 
other explanations
Loading problem is difficult with many inputs

 The learning algorithm is a search algorithm in network 
space: with many inputs, the search space is large

 which are the inputs affecting the output?

Antagonist goals

 weights must be large to  have several attracting regions:

 but large weights decrease generalization capability 
and/or saturate sigmoids and/or make gradient oscillate

 There must exist regions where 
డ௭(௧ାଵ)

డ௭(௧)
<1 holds to store 

information in a robust way

 But 
డ௭(௧ାଵ)

డ௭(௧)
<1 makes make gradient small 

 Small regions are difficult to reach

Long short-term memory: 
a solution

The idea

 keep 
డ௭(௧ାଵ)

డ௭(௧)
equal to 1

 this makes the error signal 
to remain close 1 through 
several time steps

LSTM cell

 a neuron to store the state

 an input neurons

 a store neuron and a gate  to decide whether to store input

 a forget neuron and a gate  to decide whether to reset the 
state 

 An output neuron and gate  to decide whether to output 
the state
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Long short-term memory

LSTM cell

 neurons use sum and sigmoidal activation

 gates use just product

State 
neuron

Input 
neuron

forget
neuron

output
neuronstore

neuron

input output

gates

Long short-term memory

The state

 f(t) is 0 to forget, it is 1 to remember

 i(t) is 1 to store input, it is 0 to skip

z(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

State 
neuron

input output

z(t)

in(t)

f(t)

i(t)

Gates denote
products
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Long short-term memory

Store, forget and output neurons

 They are standard neurons with sigmoidal activation
function and weights, e.g.

f(𝑡) = 𝜎 𝑤𝑧𝑧 𝑡 + 𝑤𝑥𝑥(𝑡)

input output

z(t)
x(t)

Long short-term memory

LSTM networks

 constructed connecting LSTM cell

 They can be mixed with standard neurons

 common architecture: a standard input layer, a hidden 
layer of LSTM cells, a standard output layer

LSTM 

LSTM 

LSTM 
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Long short-term memory

LSTM 

 can store input for hundreds/thousands of 
instances

 Successfully applied in several application 
domains, e.g. language translation

Long short-term memory: 
why do they work?

Explanation ver 1.0

 When the forget gate is 1, then we have 
డ௭(௧ାଵ)

డ௭(௧)
=1  

𝑧(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

Another Explanation 

 LSTM assumes that 

 the problem can be solved by storing/forgetting 
inputs/states

 The decision whether to store/forget is simple
(linearly separable, implementable by a single 
layer net)

 RNN does not make any assumption

 LSTM are better than RNN if the assumption is 
satisfied

 The search space is reduced!
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Generalization capability of 
RNNs
Intuitively

 VCD of RNNs can be studied  by  observing the unfolding 
network 

 However, such an assumption does not consider the 
implications of the weight sharing 

 Current results may suffer of this limitation

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Generalization capability of 
RNNs
Neural networks with p parameters, T time steps, bounds for 
the order of growth of VCD(fw)

 RNNs with piecewise polynomial activation function 

Upper bound: O(Tp2),

Lower bound o(p2)

 RNNs with, tanh, logsig, atan activation function 

Upper bound: O(T2p4) 

Lower bound o(p4) 
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