
� DEPARTMENT OF INFORMATION ENGINEERING AND MATHEMATICS

Fundamentals of artificial neural
networks

Franco Scarselli

� (Very) short introduction to perceptron neural networks

� Aproximation capability

� Learning capability

� Generalization capability

� Autoencoders

� Recurrent neural networks

� Deep networks

OUTLINE

Machine learning

Difficult problems in computer science

� Machine vision, automatic drug design, speech
understanding, machine translation, …

� Nobody can write a program that solve them

� humans cannot solve them or

� humans are used to solve them, but …. they do not
know how they do!

Machine learning

Can you describe how you recognize an apple in images?

� It just looks like a red circleRed ?Circle?

Machine learning

Red circle?

Machine learning

If you cannot write a program that solves a problem

…. let computers learn the solution!!

� By examples

� e.g. examples of images containing or not containing
apples

� In most of the cases, humans and animals learn to solve
problems by examples

Machine learning: models

Consider a parametric model fw
� fw takes in input a pattern represented by vector z=[z1,..zn]

� fw returns an output vector o=[o1,..,om]

Example

� Input images: [z1,..zn] are the pixels

� Output: o=[0,..0,1,0,…0,0]
one hot coding of a set of objects
a one in i-th positions represents i-th object

fw
Apple

Machine learning: problems

Classification problems

� the pattern has to be assigned a class in a finite set

� the output o

� two classes: o=1 or o=0 according to the class

� several classes: o=[0,…,1,…0], (one hot coding)

� Example: recognized the object represented by an image

Regression problems

� the pattern has to be assigned a set of (real) numbers

� Example: returns the probability that object represented by an
image is a cat

Machine learning:
supervised training
Supervised dataset

� A set of pairs D={(x1,t1), (xk,tk)} is a set of pairs pattern-target

� Usually split in

� Train set L: for training the parameters

� A validation set V: to adjust other parameters…..

� A test set T: to measure the expected performance of the
trained model

Training

� Define an error function ew based on train set

� Optimize ew by some optimization algorithm

fwx te

Machine learning:
error functions
Mean square error

�� = 1
�� �� −
�(��) �

�
� the most one

� both for classification an regression problems

Cross entropy

�� = ����� log
�(���)
��

� often used in deep learning

� only for classification problems

Machine learning:
measuring performance
� The performance on test set: it depends on the problem

� Mean square error and cross entropy

� but usually not what we want

� Training error is often different from test error!!

� Classification problems

� Accuracy, F1, ROC AUC,…

� Regression

� Relative error, …

� Ranking problems

� profit, MAE, …

� ….

Artificial neural networks
(ANNs)
A class of machine learning models inspired by biological neural
networks

� A set of simple computational units (neurons)

� Neurons are connected by a network

� The behavior of the network depends on the interactions
among neurons

� The connectivity is learned

Artificial neural networks
(NNs)
Ridge neurons

� In the most common case, each neuron has

� a set inputs �1, …, ��
� a set weights �1, …, ��

� The neuron computes

� an activation level a = ∑�����
� an output level o= � �
� σ	is	called	activation	function ∑ �(.)

�1

��

�1

��(= σ �)��� + +
,

�-.
= σ)� + + Vectorial

formulation

Types of neurons

Step

� Also called heavy-side

� It takes a “hard decision”

� rarely used in practice, since

� bad: It is not continuous

� bad: Its derivative is 0 everywhere

Sigmoidal

� e.g. tanh, arctan, logsig

� they take a “soft decision”

� the most used in (old) neural networks

� Good: continuous and non-zero derivative

� Bad: derivative is zero in practice for
very large and small inputs -5 -4 -3 -2 -1 0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Types of neurons

Piecewise linear

� Rectifier Linear unit (ReLu), leaky ReLU

� It transmits the signal for positive values

� used in modern deep neural network

� Bad/good: its derivatives is 0 for negative inputs

� Bad/good: no upper bound

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

Multilayer feedforward

neural networks (FNNs)
Multilayer perceptrons… also called back propagation
networks… also called feedforward neural networks

� it is one of the oldest network models

� Neurons are disposed in layers: inputs, hiddens, outputs

� The neurons of each layer take in input the outputs of
the neurons of the previous layer

� No connection is allowed intra-layer and between non
consecutive layers

input layer outout layer

Hidden layers

Multilayer feedforwa neural

networks (FNNs)
Mulilayer networks

� each neuron takes in input the output of other neurons

� a complex behaviour emerges from the simple activity of each neuron

� The k-th neuron in the l-th layer has a bias bl
k and weights wl

(1,k),.., w
l
(dl-1,k)

� its output yl
k is

� The output yl of the l-th layer is

(/0 = σ � �(�,/)0 (�01. + +/0
,234

�-.

l-th layer

k-th neuron

(0 = σ 56(6 − 1 + +6 = σ � ��0(�01. + +/0
,234

�-.
Matrix form Vector form

Multilayer feedforwa neural

networks (FNNs)
Multilayer networks

� each neuron takes in input the output of other neurons

� a complex behaviour emerges from the simple activity of each
neuron

� e.g., the output of the first layer is

� e.g., the output of the second layer is

� e.g., the output of the third layer is

(� = σ 52σ 51� + +1 + +2

(. = σ 51� + +1

(8 = σ(53σ 52σ 51� + +1 + +2 + +3)

Interesting theoretical

properties of NN

� Approximation capability
The capability of NN model of approximating a target
function

� Generalization capability
The capability of a trained NN to generalize to novel
unseen patterns

� Optimal learning
The capability of training algorithm to produce the optimal
patterns avoiding local minima

Approximation capability

Practical question:

approximation capability

� What type of applications can be implemented by a FNN?

� Are FNNs limited in some sense?

Answer (ver 1.0)

� FNNs are universal approximators, so that they can
implement any application!

� Let us understand better the answer

� Let us understand the limits of such answer

Approximation capability

� Given a target function t, a precision ε, a norm ||.||, is
there a NN such that implements a function for which

|� −
 | ≤ <
holds?

� The intuitive answer is almost always yes
(By Cybenko; Hornik et alt.; Funahashi)

� True for most target functions t:
continuous function, discontinues but measurable, ….

� True for most of the norms:
sup norm, Euclidean norm, integral norms, …

� True for most of the feedforward NN
with ridge and gaussian activation functions,
sigmoidal, Relu, ….

Approximation capability for

continuous functions

Let

� Σ3
σ be the set of functions be implementable by a FNNs

with activation function σ and 3 layers (one hidden layer)

Σ3
σ =
 �)	� 5� + +. + +�

� σ be a sigmoidal activation function

� C be the set of continuous function

� ||. ||> be the sup norm, namely for two functions

 > = maxA |
 � |
Theorem ΣB

σ is dense in C i,.e.,for any ε, any C ∈ E, there
is a F ∈ ΣB

σ such that

C − F > ≤ G

Approximation capability for

continuous functions

A sketch of the proof will help to better understand NNs

Focus on

� FNNs with one hidden layer

� a single outpiut

� linear activation functions in outputs

� sigmoidal activation function inn hidden layer

Two step proof

� Approximation of functions on R (single input)

� Extension to function on Rn

(= 52σ 51� + +1 + +2 = ����
/

�-.
σ ���,.� + +0

H

�-.
+ +2

Sketch of the proof:

single input functions

The main idea

1. A single neuron implements sigmoid function

2. A sigmoid can approximate a step function

3. Many step functions can approximate a staircase function

4. Staircase function can approximate any continuous function

Sketch of the proof:

single input functions

A neural network with one hidden neuron and increasing input-to-
hidden weight

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

σw 1

Sketch of the proof:

single input functions

� A staircase function is made by many
step functions

� Staircases functions can approximate
any continuous function.

� The precision of approximation
improves increasing the number of
steps

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

Sketch of the proof:

another approach

The main idea

1. For any polynomial p, we can construct FNNs with analytic
activation function that approximates p

2. Polynomials can approximate any continuous function

Sketch of the proof:

approximating polynomials
Analytic functions … let us remember what is

� A function is analytic if for each x0 its Taylor series converges to
f in a neighborhood of x0

I limA→∞ KALM(�) =
(�)
� Taylor series of a function f developed up to T term computed in

x0 with rest

K�0M � = � 		

/ (�0)
�!

P

/-L
(� − �0)/ 		[+RM � − �0]

Sketch of the proof:

approximating polynomials
Analytic functions … useful intuitive facts

� Analytic functions looks like polynomials (their Taylor series)

� Actually, they looks like polynomials except for the error RT(x-
x0), which is smaller than O((x-x0)T)

� Thus, a neuron with an analytic activation function looks like a
polynomial…

� … then, an FNN looks like a combination of polynomials

Sketch of the proof:

approximating polynomials
Go back to the original goal …

� for any polynomial p(x)=c0+c1x+c2x
2++...+crx

r, construct FNNs
with analytic activation function that approximates p

� an FNN looks like a combination of polynomials…

� the goal is easily reached, just find the right combination …

� Theorem. Suppose that σ is analytic in a neighborhood of
x0, then TUV

α→WXY Z = X(Z), where

[� = lim
α→L[α � = lim

α→L� �(−1)/\0]�
^σ(�)�0)

_

/-0

_

0-L
σ 6α� + �0

This is a FNN

r neurons

First layer

weight
Hidden biasSecond layer

weight

Sketch of the proof:

approximating polynomials

� Theorem. A polynomial p(x)=c0+c1x+c2x
2++...+crx

r,
can be approximated (up to any precision) by a FNN
with r neurons!

X2

A FNN with

2 neurons

Sketch of the proof:

functions with several inputs

How can we extend our results to functions with

many inputs?

� Let us start with the case when the target

function is a ridge

Ridge functions

� A ridge function g:Rn->R, can be written as

` � = ℎ ��
where h is a function of single input

� Ridge functions are constant on hyperplanes

orthogonal to the ridge

� Ridge functions can be approximated by FNNs

The direction of

the ridge

Constant on

this hperplane

The ridge

Sketch of the proof:

functions with several inputs

How can we extend our results to functions with

many inputs?

� Just prove that

Theorem For any target function t:Rn->R and

any ε, there exist ridge functions g1,..,gk, such

that � −
 ≤ b	where

 � = ∑ `�(�)/�-.

Solution 1: the Radon

transform

� The Radon transform Rf of a function f allows to

specify f in terms of their integrals over hyperplanes

� It is used in computed axial tomography (CAT

scan), electron microscopy, …

� The inverse Radon transform is

f � = c R
(��,�)d -. dw

Intuitively, it is the integral

of f over the hyperlane

orthogonal to w and passing

through x

Sum over all the hyperplanes

to compute f(x)

Solution 1: the Radon

transform

� The inverse Radon transform contains an integral,

which can ne approximated by finite sum

f � = c R
 ��,� e� ≈d -. ∑ R
(���,��)e��/�-.

� The result is a sum of ridge functions!!

This is a

ridge

function

Solution 2: combination of

polynomials

How can we extend our results to functions with many

inputs?

� Restrict you attention to polynomials and prove that

Theorem For any target polynomial t:Rn->R, there

exist ridge g1,..,gk, such that

� � = ∑ `�(�)/�-.

Solution 2: combination of

polynomials

� Notice that the space of polynomials is related to the linear space
of its parameters

� A generic polynomial with 3 variables and degree 3

[�1, �2, �3 = ^1�.8 + ^2�.� ��. + ^3�.��8. + ^4�.. ��.	�8. + ⋯

� Its representation as a vector in linear space
[^1, ^2, ^3, ^4, …]

� The dimension of the space of polynomials with n variables and
degree r is

i = j + � − 1
� − 1

Solution 2: combination of

polynomials

It has been proved that

� a set of ridge polynomials in the form of

�1� + +1 j	, �2� + +2 j, �2� + +2 j,….

for random vi, bi are, in most of the cases, linearly independent!!

� With
j + � − 1
� − 1 random ridge polynomials you can, in most of

the cases, generate the full space of polynomials n variable and
degree r!!

Other solutions

� Other solutions exist, e.g. based on Fourier transform

� Not matter of this course

Possible extensions

Universal approximation

� Activation functions

� tanh, arctan, ReLU, step, any analytic function, any step
function

� Non admitted: polynomials

� Error norm

� Sup, L1, L2, … sobolev,…

� Arcitecture

� Any number of inputs and outputs

� At leas one hidden layer (included many)

Back to practice

� In general, the FNNs described by results on
approximation theory are not encountered in practical
experiments

� learning algorithm often produce FNNs without an
intuitive explanation

� But in particular cases, the consequences of
approximation theory are evident also in practice.

Back to practice: weight

dimension
About weight dimension, from approximation by staircases

� approximation by sigmoids is reached by large weights in first
layer and small weights in the second layer

� large weights produce saturation in sigmoids and make
learning difficult

� ReLUs do not have saturations, but very large weights may
produce large gradients

� In practical experiments,

� such a difficulty is encountered, when the target function
looks likes a staircase, e.g. it is discontinuous somewhere

� In this case learning is difficult

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

Back to practice: weight

dimension
About weight dimension, from approximation by polynomials

� With sgmoids approximation is reached by small weights
in first layer and large weights in the second layer

� such a configuration makes the network sensitive to
weight noise and makes learning difficult

� In practical experiments,

� such a difficulty is encountered, when the target
function is a polynomial and the activation function is
a polynomial!!

[� = lim
α→L[α � = lim

α→L� �(−1)/\0]�
^�σ

(�)�0)
_

/-0

_

0-L
σ 6α� + �0

Back to practice: weight

dimension
Notice that

� in several applications the target function is almost
polynomial (e.g., in dynamic system identification)

� common tricks to alleviate the problem

� add input to output weights

� use neural network in parallel with a polynomial
approximation

� Use ReLU in place of sigmoids mayalso work

Back to practice: ridge

direction

What about the directions (not dimension)	of ridges �..,…, �H.?

(= ����
/

�-.
σ ���.� + +0

H

�-.
+ +2

Back to practice: ridge

direction
� The results from Radon transform tell us that the directions and

the biases can be chosen by a grid on the ball |w|=1

� When combined with a selection of the biases from a grid, the
hyperplanes wix=bi constitutes a partition of input domain !

hyperplanes

wix=bi

Directions of the ridges

Back to practice: ridge

direction
� The results from polynomial combination suggest that ridges and

the biases (the partition) can be even random!

A constructive algorithm from

theory

A simple algorithm (me and Ah Chung)

1. Chose the first hidden layer weights and biases from a in a
random way (or uniformly from a grid)

2. Make the first hidden layer weights very small (or very large)

3. Adapt only the send layer weights and bias to minimize the
error function

Notice that

� this algorithm does not suffer from local minima!!!!

(the error is quadratic w.r.t the last layer parameters)

� It works also for many outputs

The error is quadratic w.r.t

the last layer parameters
Let us look at a FNN formulas using matrices

The dataset

� {(x1,t1), … (xk,tk)} a set of patterns

� k = �1, . . ��	 		 Set of Inputs in matricial form

� M = [�1, . . ��] Set of targets in matricial form

The network output Y

� l = σ 51k + +1	m Matrix of hidden

� n = 52l + +2m Matrix of outputs

where
m = 1 … . 1

W1,W2, are the input to hidden weight matric and the hidden to output
weight matrix, respectively

The error is quadratic w.r.t

the last layer parameters
Let us look at a FNN using using matrixes

The error

� � =)�] M − n 2

It is quadratic

� =)�] M − n 2
=)�] M − 52l + +2m 2
=)�] M −)�] 52l + +2m 2
=)�] M 	− op⊗qr	stu 52 − mp⊗qr	+2 2
=)�] M 	− [op⊗qr	, mp⊗qr]	[stu 52 , , +2] 2

Vec transforms a

matrix into a vector

Kroneker

product
Vector-matrix

product

Identity

matrix

Compatibility between

Kronecker product and vec

)�] Ivw = wp⊗I)�] v
)�] vw = wp⊗x)�] v

Vector of the

paramters

Constructing the network:

ELM and fixed basis functions
Extreme learning machines (ELM) (Huang)

1. In ELM only the last layer weights and bias are trained

2. the second layer weights are computed by the pseudoinverse

Claimed advantages

� very fast to train

� approximation property is conserved

� good generalization ? (we will discuss this later)

In general, this is called approximation by fixed basis functions

� Polynomial

� Gaussian functions

� Support vector machine

� …

Constructing the network: ELM

and fixed basis functions

So, why should we use FNN instead of ELM?

� Approximation by FNNs require a smaller number of neurons!

� Need to discuss about resource usage, not only about
universal approximation!

Back to the initial practical

question

� What type of applications can be implemented by a FNN?

Answer (ver 1.0)

� Almost all common FNNs are universal approximators: they can
implement any application!

Advanced question

� Does this mean that all the FNNs are equivalent?

Answer (ver 2.0)

� No, the precision of the approximation depends on the FNN
architecture, the number of neurons/paramters ….

Going beyond universal

approximation
The approximation precision depends on

� the complexity of the model

� the measure of the approximation

� the complexity of the function to be approximated

The idea

� fix a set of functions having a given complexity

� fix a measure of approximation

� study how the approximation improves with a larger and lager
number of neurons

Going beyond universal

approximation
Barron proved that

� Let t the target function, T is its Fourier transform and

w� = y) M) e)
zH

� There is a FNN fk with sigmoidal activation function and k
hiddens

y � −
�
{_

2 ≤ 2jw� 2
�

Thus,
� The square error decreases linearly with the number of hiddens

How much t is complex

Linear convergence of error

with the number of neurons

Constructing the network

� There is a FNN fk with sigmoidal activation function and k
hiddens

y � −
�
{_

2 ≤ 2jw� 2
�

Such a bound can be achieved by this procedure which iteratively
add neuron

1. Set f0 (x) equal to the constant 0 function

2. Set fi (x)=α fi-1(x) + β σ(wx+b)

� Optimize α ,β,w,b
(the error must be decrease for a given amount O(1/i))

3. Repeat 2 until the desired error is achieved

FNNs vs basis functions

Barron 1993 proved also that

� For every choice of basis function h1,..,hk,, S being the set of
functions spanned by h1,..,hk and Tc being the set of functions
whose complexity is smaller than C, we have

sup
�∈P�

min�/∈	�
y � −
�

L,. H
≥ κ

w
�		 ��

where κ	is	an	universal	consta
Thus,
� There are target functions for which approximation by ELM,

polynomials, … is much worse than approximation by FNN!

� It is O(1/k) in FNN wrt O(1/ ��
)

� When the input space is large, the difference is huge

Sublinear convegence

FNNs vs ELMs: an intuitive

explanation
Back to the ridge grid concept

� When the first layer parameters are random, the hyperplanes
wix=bi forms a sort of random grid

� But, when those neurons are really useful?

� If the target function t is a ridge, only neurons having the
direction of the ridge are useful

� If the target function t is constant in a region, the neurons
changing in such a region are not useful

Neurons useufl

to approximate a

ridge function

The complexity of different

classes of functions
Back to Barron result

� There is a FNN fk with sigmoidal activation function and k
hiddens

y � −
�
{_

2 ≤ 2jw� 2
�

� How large is Ct in practice?

How much t is complex

The complexity of different

classes of functions
Barron proved that

� Ridge functions, t(x)=h(wx),

w� ≤ � ℎ′(0)

The complexity does not depend on number of inputs!

� Radial basis functions, t(x)=h(|x|),

w� ≤ �./�
It depends on input dimension

� For polynomial, Barron proved that w� depends only on the
coefficients.

But it is even better, a finite number of sigmoidal neurons are
required for any degree of approximation

The complexity of combined

functions
Barron proved that

� Translation, t(x)=h(x+b)

w� = wℎ

Translation does not affect complexity

� Linear combination, � � = ∑ ��ℎ�(�)/�-.

w� = ���w�
/

�-.

The complexity of combined

functions
Barron proved that

� Product, t(x)=h(x)*g(x)

�� = �ℎ �`
w� = �ℎ w� + �� wℎ

� where

w� = y) M) e)
zH

						�� = y M) e)
zH

(T is the Fourier transform of t)

Which are the complex

functions?
A doubt

� For all the above classes functions (except for gaussian), the
error decreases linearly with number of hidden units

� Even if the combined function are simple

� Which are the functions which requires a lot of hiddens?

Intuitive answer

� Complex functions cannot be defined from simple functions in
few steps!!!

� Several products, sums … are required

� Or several compositions t(x)=F(h(x))) are required

Final pratical remarks about

approximation capability

Properties

� most of the common models are universal approximators

� but different architectures have different properties!!

In practice

� the best architecture depends on the problem

Learning capability

Practical question: learning

capability

Now, we know what a FNN can approximate any

function, but what about what a FNN can learn?

Learning in neural networks

Optimization of error function ver 1.0

� by gradient descent

� update the parameters according to

� � + 1 = � � − λ
���
��

until a desired minimal error is obtained

Learning in neural networks

Gradient descent

Learning in neural networks

Gradient computation

� by an algorithm called backpropagation

� linear time w.r.t. the number of neurons

� not a matter of this course

Optimization of error function

� Several variants of gradient descent exist: momentun,
batch, …

� Several other optimization algorithms exist: resilient
backpropagation, conjugate gradient, Newton, …

� Not matter of this course

An old experiment

The idea (Lawrence et al.)

� construct a random network N1 with k1 hiddens

� generate a random domain and use N1 to generate the
targets

� train another network N2 with k2 hiddens

� When k2>=k1, the best minina has cost 0!

An old experiment
Results

� target network k1=10

� 5 inputs,5 output

� 100 patterns train set

� Experiments repeated several times

Train set

An old experiment
Results

� target network k1=10

� 5 inputs,5 output

� 100 patterns train set

� Experiments repeated several times

Test set

An old experiment

Conclusions

� Training often does not produce the optimum

� Training is a challenge

� The error improves increasing the number of hidden units

� The more the parameters, the better the
approximation

� The error on test set may increase even it increases on
train set

� Generalization is a challenge

Practical question: learning

capability

Why does training fail

Answer (ver 1.0): local minima

� learning capability depends on the

presence/absence of local minima in error function

� Theoretical results on this are few and incomplete

… let us review them

Absence of local minina

There is no local minimum if

� Network

� a single neuron (with sign activation)

� Patterns

� Linearly separable patterns

� Proof: look at the separation surface and how it can be moved

+

+

+
+

+

-

-

-

--
sign

w1
1

w2

Separation

surface

Ridge

direction

Absence of local minina

Extension to FNNs (Gori et al.)

� Network

� one hidden layer

� sigmoidal outputs, one hot coding of C classes

� hidden to output weights are separated for each class

� Patterns

� Linearly separable

input layer output layer

+
++

+

-
-

- *
*

*

Absence of local minina

(At least) so many neurons as patterns (Yu et alt.)

� Network

� One hidden layer with n neurons

� Linear outputs

� Patterns

� n-1 distinct pattern

So many neurons as

patterns
Proof… the idea

Remember that

� =)�] M − n 2=)�] M 	− [op⊗qr	, mp⊗qr]	[stu 52 , , +2] 2

=)�] M − R[2 2
p2= [stu 52 , , +2]
R=[op⊗qr	, mp⊗qr],

� with neurons and n−1 patterns R �� a square matrix

� if R is full rank, than the linear system has a solution!

0=vect(T)-Rp2

� The trainset can be perfectly learned (error =0)!

So many neurons as

patterns
Proof… the idea

Remember that
� =)�] M − R[2 2

p2= [stu 52 , , +2]
R=[op⊗qr	, mp⊗qr],

� The gradient is ��
�[2

= 2)�] M − R[2 pR
� If R is full rank, than the gradient is 0 only when the error is 0!

The rest of the proof (skipped)

� When R is not full rank (very rare case in practice), then equilibrium
points correspond unstable points

Absence of local minina

Linear networks (Baldi)

� Network

� One hidden layer

� Linear outputs

� Patterns

� Any set of patterns

� The result

� The error surface show a global minima and several
saddle points but no local minima

Presence of local minima

Many minima for a perceptron (Auer 1996)

� Network

� A single perceptron

� Sigmonidal activation function

� Patterns

� K patterns, ad hoc displacing

� Number of local minima

� At least

Presence of local minima

A sketch of the proof for a single input perceptron

� Only the patterns where the neurons are not saturated affects
the derivative of the error

� The following figure shows a local minima, as we can only
improve the errors on the circled patterns

-- - - -- --

+ ++++

-

++++

Error decreases

if saturation increases

Presence of local minima

A sketch of the proof for a single input perceptron

� There is a lot of minima

+ ++++

-- - - - -

+

-

+++

--

Presence of local minina

Extended XOR (Bianchini)

� Network

� One hidden layer with 2 neurons

� Sigmonidal output activation function

� Patterns

� 5 patterns
x1 x2 target

0 0 0

0 1 1

1 0 1

1 1 0

0.5 0.5 0

Presence of local minina

Extended XOR (Bianchini 96)

+

- +

-

-
Optimum

Local

mimum

Moving the
separation surface
Increases the error

Practical question: learning

capability

Why does training fail?

� Are really local minima the answer?

We may have disregarded the role of

� attracting regions

� flat regions (and saddle points)

� regions with deep valley

Attracting regions

Attracting regions (local minima to infinity)

� The error decrease on a path which makes weights larger
and larger

� The minima, if it exists, it is at infinity: it can be both a global
minimum or a sub-minimum

Why learning is difficult

� Lager weights produce saturations in networks with sigmoids
(and flat error surface)

� Large weights may produce numerical problems

� Large weights may produce large oscillations during learning

Attracting regions

Networks with sigmoidal activation

� They may have a large number of attracting regions, due to
the saturation of the sigmoid when the weights are large

� If output neurons use sigmoids and the error function is MSE

� a perfect learning of the train set requires for infinitive
weights!

Networks with only ReLU activations

� They require large weights to implement discontinuous or
unbounded functions (recall approximation by step functions)

� Otherwise,

� With MSE, attracting regions do not exist

� With cross entropy and soft max attracting regions do
exists, but they are equivalent finite minima

Attracting regions

With sigmoids

� if input to hidden weight increases, saturation

increases

� If saturation increases, the error decreases

-- - - -- --

+ ++++

-

++++

Flat regions (and saddle

points)

An example of an error surface

Flat regions (and saddle

points)

Why learning is difficult

� No ways to distinguish between saddle points, flat surface
and minima

� Very slow convergence rate

� Numerical errors

In both networks with sigmoids and ReLU

� In sigmoids flat surfaces are due to saturations

� In ReLU, flat surfaces are due to the constant part ot ReLU

� Some approaches use

• Leaky ReLU σ(x)=x if x>0, σ(x)=ax otherwise, with 0<a<1

• Exponential linear unit (ELU)

σ(x)=x if x>0, σ(x)=a(e-x-1) otherwise, with a>0

• ….

Regions with deep valleys

Condition number for a matrix A

� The ratio between the largest and the minimum
eigenvector

� k(A) =λmax(A)/ λmin(A)

An error function ew having Hessian matrix ∇2ew with a large
condition number

� the error function has a deep valley

� optimization is difficult when k(∇2ew) is large

� Explanation 1.0

Gradient descent follows a zig-zag path!!

Regions with deep valleys

Regions with deep valleys

Regions with deep valleys:

a theoretical viewpoint
Remember gradient descent

� ew (t) error function at iteration t w.r.t. weights w(t)

� α learning rate ∇��(�) gradient

� � + 1 = � � − α∇��(�)

� Gradient descent converges if �� is convex (or if it starts
in an attraction basin)

� Let us assume an optimal α is chosen

Regions with deep valleys:

a theoretical viewpoint
It can be proved

� Let w* be the optimal weights and ∇2e the Hessian matrix in w*

� ∗ −� � ≤ � �2� − 1
� �2� + 1 � ∗ −�(� − 1)

� Thus, in order to obtain an error ε, we need k iterations

k= � / ��� 1.
/ ��� \. /log	(b)

Regions with deep valleys:

a theoretical viewpoint
� In a general case, the function may not strongly convex

� In this case, condition number of Hessian may be infinitive

� Let ew .satisfies the following (L - Lipschitz continuous gradient
function, L-lcg function)

���1 − ���2 ≤ � �1 − �2

It can be proved

� Basic gradient descent is 		� �/b
� Newton is � �/b

Regions with deep valleys:

a theoretical viewpoint
A lower bound

� For any ε, there exists an L-lcg. function f , such that any first-
order method takes at least

� �/b
steps

Intuitive message 1

� Learning may be difficult even if the error function

has only a minimum: the minimum may be at the

bottom of a (badly conditioned) deep valley!!

Intuitive message 2

� Learning may bed difficult even if the error function

has only a minimum: when the L-lcg function is large

the gradient may be and widely vary giving rise to

very weird functions!!

Learning capability:

a negative result
Loading problem (decision version)

� Given a neural network architecture and a set of training
examples, does there exist a set of edge weights for the
network so that the network produces the correct output for all
the examples

It has bee proven that the following Judd

� Loading problem is NP-complete!!

The theorem holds for

� binary functions

� network with threshold activation functions

Learning capability:

a negative result

Extensions proven by Judd

� only two layers

� fan-in smaller or equal 3

� Only 67% are required to be correct

� …

Final remarks about learning

capabibility

In practice

� even if a model can approximate a target function, such a
model may not easy to learn

� learning capability depends

� on the problem (train set)

� the adopted model

� In general

� the smallest the data, the simplest the learning

� the larger the model, the simplest the learning

Other aspects we have not

considered

Information contained in features

� Noise and lack of information may prevent perfect

loading

� It is difficult to know whether your learning

algorithm works

� When the information in feature is very few, you

may want to adopt transductive learning methods

Error function adopted for learning

� Training error function is often different from test

error function

� You may want to try different train error function

Other aspects we have not

considered

Patterns are trained independently

� Good precision does not ensure that derivatives are

approximated

� Relationships between patterns are not ensured

� There are machine learning methods suitable for

this case

Generalization capability

Pratical question:

generalization capability

After training, how does the FNN will perform on

new patterns from a test set?

Generalization

� Iet us measure this with the performance of a

model f on a test set T

f= Ψ(L) is produced by a learning algorithm Ψ
using a train set L

Pratical question:

generalization capability

Interesting questions

� what is the predicted performance of f on test set T?

� This question is related to

� which model should we choose?

� which learning algorithm should we choose?

� When learning should be stop?

Answer 1.0

� no answer is possible without assumptions on training

algorithm and network architecture

Measuring generalization

capabilty requires assumptions

How well will this model generalize on novel patterns?

Train set

patterns

The model

Measuring generalization

capabilty requires assumptions

Very well!!!

Train set

patterns

The model

Test set

patterns

Measuring generalization

capabilty requires assumptions

Very bad!!!

Train set

patterns

The model

Test set

patterns

Measuring generalization

capabilty requires assumptions

Another model?

Train set

patterns

The model

Test set

patterns

Measuring generalization

capabilty requires assumptions

Another model? …. It does not generalize well in this case!

Train set

patterns

The model

Test set

patterns

Measuring generalization

capabilty requires assumptions

Which model is best to have a good generalization?

Train set

patterns

Model 1

Model 2

No free lunch theorem

Intuitive version

� Without constraints on the considered problem, all the
learning algorithms may show the same generalization error!!

Formally

� A training algorithm which produces a model f:X->Y , using a
train set

� X= a fine set of inputs, Y= a finite set of outputs

� Train set L={(xi,ti) | xi ∈X, ti ∈Y}

� Test set T ={xi | xi ∈X}

� The target function t:X->Y

� Error on test set ����� = ∑ �(� �� ,
 ��)A�
P for some error
function L

If the target function t is uniformly sampled, for any learning

algorithm mean(etest) is constant

No free lunch theorem

It means that without assumptions

� The learned model which is better on a problem is worse
on another:

� If A1 is better than A2 on certain kind of problems,
there must be another kind of problems where A2 is
better than A1

� averaged over all the problems, both algorithms are
equally good.

� Even a random learning algorithm performs as well as the
other algorithms

� Generalization is not possible without a (often implicit) bias
of the algorithm

Measuring generalization

capabilty requires assumptions

Assumption 1: data distribution

� The data on test set (working environment) are drawn from the
same distribution as the data in train set

� Not obvious in real applications

� It means that the pair pattern-targets must be drawn from the
same distributions

Measuring generalization

capabilty requires assumptions
Occam's razor (law of parsimony):

� the simplest explanation is usually the correct one

Assumption 2:

� the model that produces the best generalization is the simplest

(among those that classifies correctly the train set)

Such an assumption is about real life applications!

Next step … how do we measure simplicity/complexity?

Measuring simplicity

Better model 1, which is the simplest

Train set

patterns

Model 1

Model 2

Measuring simplicity

Intuitive ideas: the complexity of a parametric model

depends on

� the number of roots the model can have

� the number of maxima/minima the model can have

� the number of patterns the model can interpolate

� the number of ways a set of patterns can be

classified

� …

Measuring simplicity: Vapnik-

Chervonenkis dimension (VCD)

Intuitive definition of “shatter”

� A classifier 	
� is said to shatter a set of patterns �1, . . ��, if by changing the parameters we can

classify the patterns in any possible way

Formal definition of “shatter”

� for any possible assigmament �1, . . ��, ti∈{0,1}, there

is a set of parameters w such that

� �� > 0 if ti>0
� �� < 0 if ti<0

Examples of shattering

Example 1

� A linear function fw(x)= w1x+w0 can shatter the set

{1,2}... (and any set of 2 reals)

Example 2

� A polynomial fw(x)= w3x
3+w2x

2+w1x+w0 can shatter

the set {0,1,2,3}... (and any set of 4 reals)

Example 3

� The function fw(x)= tanh(w1x+w0) can shatter the set

{1,2}... (and any set of 2 reals)

Example 4

� The function fw(x)= sign(sin(w1x+w0)) can shatter

any set in R!!!

Vapnick-Chervonenkis

dimension (VCD)

Intuitive definition

� The VCD dimension of classifier 	
� is the

dimension of the largest pattern set on which we

can implement any classifier

Formal definition

�w�
� = max� k , X	is	a	set	shattered	by	fw

Intuitive ideas about VCD

VCD provides lower bounds on

� the maximum number of roots

(models with a single input)

� the maximum number of minima/maxima

(models with a single input)

� the maximum number of regions partitioned by the

model

(models with many inputs)

Examples of VCD

Examples

� linear functions fw(x)= w1x+w0

VCD(fw)=2

� Polynomials of order k, fw(x)= wkx
k+…+w1x+w0

VCD(fw)=k+1

� Neural networks with k neurons, single hidden layer,

step activation function

VCD(fw)=k+1

VCD of neural networks

Neural networks with p parameters, bounds for the order of
growth of VCD(fw)

� FNNs with step activation function

Upper bound: O(p log p),

Lower bound o(p log p)

� FNNs with piecewise polynomial activation function

Upper bound: O(p2),

Lower bound o(p2)

� FNNs with, tanh, logsig, atan activation function

Upper bound: O(p4) … this may be overestimated

Lower bound o(p2)

VCD and test error

Vapnik proved that

� the problem is to learn a binary classifier fw
� V is VC dimension of fw

� Mean train error ��j��� = .�∑ �� −
�(��)��-.
� Mean test error ����� = .�∑ ��� −
�(���)���-.
� 0<ε<1

� Train and test patterns (and targets) are drawn by the same
distribution

Then

	P �����≤��j��� + V(log(���) +1)− log(43ε�)� ≥ε

VCD and test error

Vapnik proved that (Vapnik 1989)

	P �����≤��j��� + V(log(���) +1) −log(43ε�)� ≥ε

� The larger the number of train samples N, the smaller the
generalization error

� Overfitting behaviour when training with few examples

VCD and test error

Vapnik proved that (Vapnik 1989)

	P �����≤��j��� + V(log(���) +1) −log(43ε�)� ≥ε

� The larger VD dimension V, the larger generalization error

� Complex models produce worse generalization

VCD and test error

It has been proved also the converse

� When VCD is large then the generalization probability is large!!

� If VCD is infinitive, then it may be impossible to learn a model
with bounded generalization error !!!

� Can you guess why?

VCD and test error

The function sin(w1x), large w1

Generalization capablity in

practice

In practice

� The VCD allows to estimate the error on test, but the VCD
cannot be used in practice, since the bounds are too raw

Alternatives for choosing architectures, algorithms, ….

� Predict the perfomance on test set (by validation)

� Keeping weight small

� This includes Support Vector Machine …. Not a matter of
this course

� Pooling

Validation by random

subsampling

Let D be the available dataset

1. Divide D randomly into a train T and a validation subset V

2. Train the model on T

3. Evaluate the mode on the validation set N

4. Repeat k times

5. Calculate the average error rate

Validation k-fold cross

validation

Let D be the available dataset

1. Divide D randomly into a train T1,..,Tk subsets

2. For i=1 to k

Train the model on all the set except Ti

Evaluate the model on Ti

3. Calculate the average error rate

Validation k-fold cross

validation

Validation: why does it

work?

Why does it work?

� Validation just allows to experimentally predict the error on test
set

� We must assume that validation set is drawn from the same
distribution of test and train set

Validation: what is it useful

for ?

� To compare different models (neural networks, Bayesian
models, …)

� To compare different architectures (number of layers, number
of neurons, …)

� Decide when to stop learning

� ….

The role of weight sizes in

neural networks

Does weight size affect generalization?

� network with small weights produce smooth

function

� smooth functions look simpler than non-smooth

ones

Notice

� Networks with small weights are universal

approximators ….

� Can you prove this?

The role of weight sizes in

neural networks

A neural network a single layer and different weights sizes
(w=0.3, 0.4, 0.5)

VCD and weight size

An extended version of VC dimension (Bartlet)

� Usual mean test error ����� = .�∑ ��� −
�(���)���-.
� Error on train set

(those patterns for which the output is small are errors)

etrain
γ = .�∑ 	eγ(��	,
�(��))	��-. , eγ(��	,
�(��))	=1 if		��•
�(��)	≤γ,			eγ(��	,
�(��))=0 otherwise

� V(γ)		fat-shattering dimension

� V(γ) i is the maximum dimension of a set shattered with error
smaller than γ

Then

P �����≤��j��γ� + 2V(γ/16) ln(¡�¢��(γ/16)
)log(578N) +ln(�43ε)� ≥ε

VCD and weight size

An approximated version of VC dimension (Bartlet)

	P �����≤��j���γ + 2V(γ/16) ln(¡�¢��(γ/16)
)log(578N) +ln(�43ε)� ≤ε

� The bound has similar properties w.r.t those of VC,

� The larger V(γ) the worse the generalization

� even if

� ��j���γ is larger than ��j���
� V(γ) is larger than V

VCD and weight size

Bartlet proved that

� Neural network with sigmoidal activation function, having output in
[-M/2,M/2] and module of derivative smaller than β

� Module of input smaller than B

� L layers

� Weights bounded by α

�(£) ≤ 	 ¤{�
γ�

¥
γ

�(¦1.) 2αβ ¦(¦\.)6§` 3¦1. � − 1 ! (2� − 1) j� 	
� The smaller the weights, the smaller the fat-shattering dimension ¨(γ)	!!

Weight dimension

Keeping weight small

Early stopping

� Initialize the weights to small values

� Train the network

� stop when error on validation increases

Validation

error

Train

error

Stop here

Keeping weight small

Penalty (weight decay)

� Add penalty on a weight to error

��j��� = 1i� �� −
�(��) + λ[(�)�
�-.

where [� = ∑ ����
Notice that �[(�)��� = −2wi

Weight

decay

Keeping weight small

Constraint on neuron weights

� For each neuron k, activate a constraint when the input
weight is larger than a given maximum

[�(�) = ©����� −ª� �
	����� > ª�0 §�ℎ�j����

Pooling layers

� Neurons of a layer are grouped in subset

� For each pattern, only a fraction of the neurons in a
group are activated

� The output of the other neurons is not considered

� The active neurons an a group are selected by

� Taking the max (maxout)

� Taking a random set (dropout)

Pooling layers

Pool 1

Pool 2

Trained

weights
Fixed

weights

Select by

• dropout,

• maxout,

Pooling layers

� Pooling layers reduce parameters and neurons

� Pooling layers reduce VC dimension

Other explanations

� Early stopping helps because it predicts the test set
performance

� Weight decay disactivate some of the weights

� Pooling removes similar features

� …

Final practical remarks about

generalization capability

In pratice

� In general

� the largest the model architecture, the smallest the
generalization

� the largest the weights, the smallest the generalization

� The smallest the train set, the smallest generalization

� But remember that the generalization capability depends in
complex way on

� the model architecture
(the type, the number of weights/neurons, the size of the
weights),

� the problem
(the type, the number of examples in train set)

Approximation, learning,

generalization: the global picture

Antagonist goals

� Larger models improve approximation and learning, but they
decrease generalization

� Larger weights improve approximation, but they decrease
generalization

� Larger trainset improve generalization, but makes learning
more difficult

Approximation, learning,

generalization: the global picture

approximation learning generalization

Large train set worse better

Large weights better ? worse

Large model better better worse

Other constraints to considered

to select the architecture

Constraints from the considered problem

� There is a minimum dimension for the model

� In a practical application, the approximation (error)
cannot be smaller than a minimum

� Too small models cannot reach such a approximation
minimum

� There is a maximum amount of data available for training
and validation

� Collecting/labelling data is expensive, …

� The computation resources are bounded

� Dimension of train set and model dimension affect the
required computational resources

Why generalization may be

different from what expected

It is assumed that the patterns of train, validation, and test
sets are drawn from the same distribution

� The distribution is different in most of real life applications
(performance on test much worse than on
validation/train)

� Patterns in test may appear also in training
(performance on test better than expected, when a
lookup table is used)

� Often there are relationships between patterns

� Patterns are not independent

� Using relationships improve performance on test

Our analysis of generalization

does not include reliability
Reliability

� A measure of how much you can trust the prediction

� Very important in verification problems

� Generalization theory is not of help

� It tells you how many errors your model will do on the
whole test set

� It does tell you anything about the reliability of the
prediction on a single pattern

+

Reliability

� A measure of how much you can trust the prediction

� Very important in verification problems

� Common neural networks do not provide a reliability measure

� The prediction may be very unreliable for outliers!

� Separation surface is unreliable where there are no train
patterns

+

-
--

-

- --

-
- -+

+
+

+
+

+
+

+
+

+
+

Separation

surface

An outlier

Reliability in machine

learning

Predictive models (bayesian models, autoencoder)

� Model trainset distribution

� Predict the probability that a pattern is generated from the
same distribution as that of training set

� Good to recognize outliers

� Good for verification problems

Discriminative models (common neural networks, SVMs,..)

� Do not model trainset distribution

� Predict the most probable class (or targets)

� Good for classification problems

Autoencoders

� Input and output layer have the same number of
neurons n

� One (or many) hidden layer with k<n neurons

� The network is trained to copy input x to output fw(xi

n inputs
n outputs

k<n

hiddens

��j��� = � �� −
�(��) 2
�

Autoencoders: how they are

used
For verificaton

� During trainining, the autoencoder is trained to copy
input to ourput

� During test, we use (x-fw(x))2 as a measure of the
probability that x belong to the train set distribution

For classificaton into k classes

� During trainining, the k-th autoencoder is trained to copy
input to output using only positive patterns of each class

� Eventually error is changed to accommodate
negative examples

� During test, it is returned the class of the autoencoder
that obtains the smallest errror (x-fw(x))2

Autoencoders: how they are

used
For feature dimension reduction

� During trainining, the autoencoder is trained to copy
input to ourput

� During test, the hidden node output is used as
compressed representation of the features

n inputs
n outputs

k<n

hiddens

Compressed

representaton

Autoencoders: why they

work
Why autoencoders work

� The autoencoder cannot approximate the identity
function

� The autoencoder compresses the input information
into a smaller space

� The smaller the hidden layers, the larger the
compression

n inputs
n outputs

k<n

hiddens

Autoencoders: why they

work
� The function implemented by an autoencoder is

� An autoencoder implements a sort of non linear
version of PCA (Principal component analysis)

n inputs
n outputs

k<n

hiddens

 � = 52σ 51� + +1 + +2

Autoencoders vs common

networks

It has been proved that (Gori … and me)

� The separation surfaces for autoencoders are

always closed

(provided that the number of hidden neurons is

smaller than the number of inputs)

� The separation surface of a FNN can be both

open and closed

Autoencoders vs common

networks

� A contour plot of an autoencoder

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Autoencoders vs common

networks

The separation surface of a feedforward network

with 5 hiddens

Autoencoders vs common

networks

The separation surface of a feedforward network

with 5 hiddens

Autoencoders vs common

networks

Intuitively

� Autoencoders are advantageous for verification

� due to closed surface fact

� due to the fact that it is a predictve model

Recurrent neural networks

Recurrent neural networks

(RNNs)
Dynamical neural networks

� An internal state z(t) ∈ Rs

� A sequence of inputs x(t) ∈ Rn

� A sequence of outputs x(t) ∈ Rm

� A transition network
�
� � � + 1 =
�(« � , � �)

� An output network `�
� § � = `�(« �)

fw gw

z(t)
x(t)

z(t)

o(t)

Feedforward

networks

Training recurrent neural

networks
The train set

� A pattern is a pair of sequences of inputs and desired
outputs

� � = {(�̅, �̅)|�̅ = � 0 , � 1 , … � M , �̅ = � 1 , . . �(M)}

Training recurrent neural

networks
Unfolding network

� A copy of fw, gw for each time instance, connected in sequence

The unfolding network is a feedforward network
(with shared weights)

� The unfolding network can be trained by standard
backpropagation
(just remember to accumulate gradients)

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Approximation capability of

RNNs

RNN approximation ver 1.0

� given dynamical system, can it be approximately

simulated by a RNN?

Formally, is there a RNN that simulates the following?

� a transition function
̅
� an output function `̅

̅ `̅z(t)
x(t)

z(t)

o(t)

Approximation capability of

RNNs
Obvious answer

� Yes

Just take neural networks that approximate
̅
and `̅

fw gw
z(t)

x(t)

z(t)

o(t)

̅ `̅z(t)
x(t)

z(t)

o(t)

Target dynamic system
RNN

Simulating a dynamical

system
Obvious answer

� Yes

Just take neural networks that approximate
̅
and `̅

But notice

� We implicitly assumed the state dimension is

known (at least finite)

� The transition and output networks must have

at least one hidden layer

� The sequences of outputs generated by the

two dynamical system may diverges with time

Approximation capability

An advanced question

� Let us consider a function t that takes in input sequences of

patterns �(M) = � 0 , � 1 , … � M and returns an output t(�(M)) = §(M)
� Can a RNN approximate t?

An intuitive answer

� Yes, provided that

1. The transition network can code the input sequences (or
all the relevant information) and store into the state z(t)

2. The output network can decode such a representation and
produce the output

� If the coding exists, the thesis is true by universal
approximation

Approximating sequences

� Yes, provided that

1. The transition network can code the input sequences (or all
the relevant information) and store into the state z(t)

Simple case: the dimension of the state must be large enough

� It must hold s > T*n

� just copy inputs to the state

The general case, s<T*n

� a set of integers v1, ..,vk can be coded with the real number
0.v1, ..vk

� E.g. 0,1234 is a coding of 1, 2, 3, 4

� a set of real number v1, ..,vk can be approximately coded with
the real number 0.[v1] ..[vk], where [.] is the rounding

� E.g. 0,1234 is a coding of 1.12, 2.15, 3.41, 4.32

Approximating sequences

It has been proved that (Hammer)

� Let us consider a function t that takes in input sequences of

patterns �(M) = � 0 , � 1 , … � M and returns an output t(�(M)) = §(M)
� t can be approximated by a RNN which is feeded with x(i)

and return o(i) for each i

� If t is measurable and the � 0 , � 1 , … � M , are reals,
then the approximation is only in probability

� If t is continuous and the � 0 , � 1 , … � M , are integers,
then the approximation is w.r.t. sup norm

RNN approximation in

practice

� when s<<T*n, the coding function exists, but

� it is complex

� It is very sensible to noise

� .. so it is difficult to learn

� In real life tasks

� only a small part of the information in inputs is useful

� Inputs are recursively processed

� Inputs belong to a sub.mainfold

� … information to be stored is much smaller and a much
smaller state dimension is required

Learning capability of RNNs

Intuitively

� Known results recall that feedforward networks

It has been proved that (Bianchini et alt)

� a RNN with one layer network

� error has no local minima, if

� the matrix of the inputs x1(0), …, x1(T), x2(1)… x2(T),
… is full-rank

� Thus, the total number of time instances cannot larger
than input dimension

Learning capability of RNNs

Intuitively

� Known results recall that feedforward networks

It has been proved that (Bianchini et alt)

� a RNN with one layer network

� error has no local minima, if

� The sequences are linearly separable

� The weights of links connecting states to states are
positive

Long-term dependencies

Intuitively

� It is difficult to learn a RNN when the at time T depends
on the input at time t and t<<T

Common explanation

� The gradient become smaller and smaller when
propagated through the layers of the unfolding network

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Common explanation

Remember

� �� M = 6 − §�(M) �
�

¯�°(P)¯A(L) = ¯�°(P)¯A(P) ¯±(P)¯±(P1.) ¯²(P1.)¯²(P1�)…… ¯² .¯A L
The term

¯²(�\.)¯²(�)
� A sxs matrix measuring how the input of fw affects its output

� When
¯²(�\.)¯²(�) <1 1 and T is large

¯�°(P)¯A(L) is close to 0

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Common explanation

¯²(�\.)¯±(�) is small where the function fw is flat

� saturated neurons

� small weights

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Long-term dependencies:

some experiments

Bengio et alt.

� The problem: learning to latch

� An input sequence x(0)…x(T)

� Two classes to be reconignized which depend only on
x(0)

� The expected output at time T o(T)>0 for class A, o(t)<=
fo class B

� The network

� A RNN with a single hidden neuron

� σ=tanh

� z(t)=w σ(z(t-1))+x(t)
σ

x(t) z(t)

Long-term dependencies:

some experiments
Bengio et alt.

� The classification task is learned only for small T (T<20)

� Some tricks with learning algorithms improved only a few the
results

Long-term dependencies:

the theory
Bengio et alt.

� .If w>1 then the system has two attracting stable states, a
positive z+, and a negative stable state z-

� Intuitively: the system is able to store some information
only if w>1

� This is true in general, if the weights are too small then
the RNN has only one stable point!!|!

� If z(0)>0, z(0) is large enough and |x(t)| not too large then
z(T)>0 (the converse hold if z(0)<0)

� Intuitively: the system resets the stored information when
the input is large or small enough

� The information storing is robust for small inputs

σ
x(t) z(t)

Long-term dependencies:

the theory
Bengio et alt.

� A more general network with any number of neurons

� z(t)=fw(z(t-1))+x(t)

� The system may have several attracting points

� There are regions close to those points where
¯²(�\.)¯²(�) <1

� Those regions

� make information latching robust

� But if inputs do not move the state from an attracting

regions, then limP→> ¯�(P)¯A(L) = 0

fw
x(t) z(t)

Actracting

regions

• ••

Stable states

Long-term dependencies:

other explanations

Loading problem is difficult with many inputs

� The learning algorithm is a search algorithm in network
space: with many inputs, the search space is large

� which are the inputs affecting the output?

Antagonist goals

� weights must be large to have several attracting regions:

� but large weights decrease generalization capability
and/or saturate sigmoids and/or make gradient oscillate

� There must exist regions where
¯²(�\.)¯²(�) <1 holds tor

,robustness

� But
¯²(�\.)¯²(�) <1 makes make gradient small

� Small regions are difficult to reach

Long short-term memory:

a solution

The idea

� keep
¯²(�\.)¯²(�) equal to 1

� this makes the error signal
to remain through time steps

LSTM cell

� a neuron to store the state

� an input neurons

� a store neuron and a gate to decide whether to store input

� a forget neuron and a gate to decide whether to reset the
state

� An output neuron and gate to decide whether to output
the state

Long short-term memory

LSTM cell

� neurons use sum and sigmoidal activation

� gates use just product

State

neuron

Input

neuron

forget

neuron

output

neuronstore

neuron

input output

gates

Long short-term memory

The state

� f(t) is 0 to forget, it is 1to remember

� i(t) is 1 to store input, it is 0 to skip

z(� + 1) =
 � «(�)+i(t) in(t)

State

neuron

input output

z(t)

in(t)

f(t)

i(t)

Gates denote

products

Long short-term memory

Store, forget and output neurons

� They are standard neurons with sigmoidal activation
function and weights, e.g.

f(�) = � �«« � + ���(�)

input output

z(t)
x(t)

Long short-term memory

LSTM networks

� constructed connecting LSTM cell

� They can be mixed with standard neurons

� common architecture: a standard input layer, a hidden
layer of LSTM cells, a standard output layer

LSTM

LSTM

LSTM

Long short-term memory

LSTM

� can store input for hundreds/thousands of

instances

� Successfully applied in several application

domains, e.g. language translation

Long short-term memory:

why do they work?
Explanation ver 1.0

� When the forget gate is 1, then we have
¯²(�\.)¯²(�) =1

«(� + 1) =
 � «(�)+i(t) in(t)

Another Explanation

� LSTM assumes that

� the problem can be solved by storing/forgetting
inputs/states

� The decision whether to store/forget is simple
(linearly separable, implementable by a single
layer net)

� RNN does not make any assumption

� LSTM are better than RNN if the assumption is
satisfied

� The search space is reduced!

Generalization capability of

RNNs

Intuitively

� VCD of RNNs can be studied by observing the unfolding
network

� However, such an assumption does not consider the
implications of the weight sharing

� Current results may suffer of this limitation

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Generalization capability of

RNNs

Neural networks with p parameters, T time steps, bounds for
the order of growth of VCD(fw)

� RNNs with piecewise polynomial activation function

Upper bound: O(Tp2),

Lower bound o(p2)

� RNNs with, tanh, logsig, atan activation function

Upper bound: O(T2p4)

Lower bound o(p4)

Deep neural networks

(DNNs)

Deep neural networks

Definition ver 1.0

� Just networks with many layers

Intuitive explanation

� Each layer produces a more abstract representation

of inputs simplifying difficult problems

� Difficult problems require the use of several layers

� Layers in animal brains are a justification of this fact

Current DNNs are much more
complex than old DNNs
Current DNNs exploits a lot of peculiarities

� Different types of layers

� Weight sharing

� Some neurons share the same weights

� Modularization

� A sub-module of the network is applied on

different subset of the inputs

� particular activation functions

� Rectifier, drop out, max out, …

An example of DNNs:

convolutional neural networks

Convolutional neural networks

� For image classification

� Originally used for handwritten digit recognition

� Currently, the best tools for object recognition sin

images are based on evolutions of convolutional

neural networks

The layers of a convolutional network

� Convolutional layers

� Pooling layers

� Fully connected layers

Convolutional neural networks:

convolutional layer

Kernel filters in image processing

� Filter kernels are matrices, which can be applied to an image

by convolution

Edge Detection Blur

� By convolution with a 3x3 matrix M, the pixels of each 3x3

window are multiplied by M

� A convolutional layer is almost equivalent to the application of

a kernel whose parameters are trained!!

0 1 01 −4 10 1 0
1 1 11 1 11 1 1

Convolutional neural networks:

convolutional layer

Convolutional layers

� A neuron of a convolutional layer

implements a kernel

� The neuron is connected to

a window (receptive field) of the original image

(f.i., a 3x3(x3) square)

� The kernel matrix is defined by the weights of the

connections

� The kernel is convoluted over the input

• There is a neuron for each window receptive field

� All the neurons share the same weight sets

Convolutional neural networks:

convolutional layer

� A convolutional layer has the dimension

of the input image (width and height)

� Intuitively, convolutional layers extract

low level features from the input image

Convolutional neural networks:

pooling layer

Pooling layers

� Each neuron of a pooling layer summarize the result of a

small window of the image

(f.i., a 2x2 receptive fields in the previous layer)

� Summarization can be by taking maximum, a random value,

…

� Pooling layers decrease the size of the features (decrease

width and height)

� Intuitively, pooling layers are used to simplify the problem by

reducing the features to be considered

Convolutional neural networks:

fully connected layer

Fully connected layers

� Common layers in which each neurons connected to all the

neurons of the previous layer

� Intuitively, fully connected layers allow to combine and reason

about the extracted features in order to take the final decision

Convolutional neural

networks
The architecture

� A convolution layer followed by a pooling layer

� One or several fully connected layer

� The pair (convolutional, pooling) may be repeated several
times

� Several convolutional layers can be used in parallel

Approximation capability ver 1.0

� DNNs are universal approximators

(with mild constraints on architecture)

� An example of the proof, whenthe network has more

hiddens than outputs starting from the thirds layer

� Given a target function t,

� the first three layers of the DNN approximate t

� remaining layers copy the ouptut of the third layer

Approximation capability of

DNNs

Approximation capability ver 2.0: the idea

� “(using the same of amount of resources),

deep architectures can implement more complex

functions than shallow networks”

A new tool was required to evaluate the complexity of

the implemented classifiers

� The following complexity measures were not useful

� Number of neurons

� VC-dimension

� Approximation capability

The role of depth in DNNs

� N: a neural network

� f: the function implemented by the network

� SN: the set of the non-negative patterns, i.e.

SN={x| fN(x)≥0}

The idea

� To measure the topological complexity of the set SN

� It is reasonable when N is used for classification purposes

The underlining idea

� Black regions represent the non-negative patterns, i.e,, SN

� Can you say which set is more complex in each couple?

Topological complexity:

an intuitive viewpoint

VS VS

VS VS

Betti numbers

� used to distinguish spaces with different topological properties

� for any subset S ⊂ Rn, there exist n Betti numbers,

b0(S), b1(S), ….. bn-1(S)

Formally

� bk(S): is rank of the k–th homology group of the space S.

Intuitively

� b0(S): is the number of connected components of the set S

� bk(S): counts the number of (k+1)–dimensional holes in S

Betti numbers: a topological

concept

� In topology, the sum of the Betti numbers

B(S)=Σk bk(S),

is used to evaluate the complexity of the set S

� We will measure the complexity of the function

fN implemented by a neural network N by

B(SN)=Σk bk(SN),

where of SN={x| fN(x)≥0}.

The proposed measure of

complexity

Betti numbers: examples

VS VS

VS VS

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=2 b1(S)=1
B(S)=3

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=2
B(S)=3

b0(S)=1 b1(S)=1
b2(S)=1

B(S)=3

b0(S)=1 b1(S)=2
b0(S)=1

B(S)=4

The considered networks

� feedforwad layered perceptrons

� with sigmoidal (ridge) activation functions in the

hidden layers and linear in the output layer

Upper and lower bounds on B(SN) varying

� The number of hidden layers l

� The number of hidden units h

� The number of inputs n

� The activation functions: tanh, arctan, polynmial of

degree r, generic sigmoids

The study

σ(Σk wk xk)

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds

1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h

many arctan 2h(2h-1) • (nl + n)n+2h n,h,l

many tanh 2h(h-1)/2 • (nl + n)n+h n,h,l

many polynomial (2 + rl)(1 + r l)n-1 n, l, h r
Lower bounds

1 sigmoid ((h-1) /n)n n h

many sigmoid 2l-1 l, h

many polynomial 2l-1 l, h

� l: number of hidden layers
� h: number of hidden units
� n: number of inputs
� r: degree of the polynomial

W.r.t. the number of inputs n, the complexity

� always grows exponentially

Analysis of the results

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds

1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h

many arctan 2h(2h-1) • (nl + n)n+2h n,h,l

many tanh 2h(h-1)/2 • (nl + n)n+h n,h,l

many polynomial (2 + rl)(1 + r l)n-1 n, l, h r
Lower bounds

1 sigmoid ((h-1) /n)n n h

many sigmoid 2l-1 l, h

many polynomial 2l-1 l, h

� l: number of hidden layers
� h: number of hidden units
� n: number of inputs
� r: degree of the polynomial

w.r.t. the number of hidden neurons h, the complexity

� grows polynomially, for shallow networks

� grows exponentially, for deep networks

Analysis of the results

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds

1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1) • (nl + n)n+2h n,h,l

many tanh 2h(h-1)/2 • (nl + n)n+h n,h,l

many polynomial (2 + rl)(1 + r l)n-1 n, l, h r
Lower bounds

1 sigmoid ((h-1) /n)n n h
many sigmoid 2l-1 l,h
many polynomial 2l-1 l,h

� l: number of hidden layers
� h: number of hidden units
� n: number of inputs
� r: degree of the polynomial

Summing up

� with the same amount of resources, deep networks can
realize more complex classifiers than shallow networks!!

Remarks

� This does mean that all the functions can be better
approximated by deep networks!!

� Only some functions with particular symmetries will have
benefict from being approximated by deppe networks

Analysis of the results

Notice that

� A layered network implements a function

fN=g1◦g2 .. ◦ gl ◦ t

� gk is the function implemented by layer k

� ◦ is the function composition operator

� If fN=g1◦ t, then fN behaves as t on all the regions A1,.. ,As

where g1(Ak)= Rn

� With several layers, the number of regions Ak such that
gl(…g1(Ak))= Rn can grow exponentially

Deep networks can replicate more easily the same behavior
on different regions of the input domain

An intuitive explanation of the

advantage of deep architectures

An example of the advantages

of deep networks

`(�) = 1 	 � 2

� � � 1 	 �.
�, 1 	 ��

�

t g◦t

g◦g◦g◦tg◦g◦t

The role of convolutional

layers

Symmetry networks (Shaw-taylor)

� Networks for which there exist a set of group of
automorphisms which maps an network in an equivalent
network where neurons are permutated

� It can be proved that the output of symmetry network is a
invariant under permutations of its inputs

a

a

b

b

c

c

The role of convolutional

layers: invariance

Convolutional networks

� Convolutional layers are automorphic w.r.t. translations of the
neurons in inputs on those on feature maps

� But this is formally true only if infinitive or circular inputs
are considered

� Convolutional layers mixed with pooling layers have also
this property

� Full connected layers are not invariant under the above
automorphisms

The role of convolutional

layers: invariance

Thus

� Convolutional networks are not symmetric networks and are
not invariant under input translations

� They could be invariant using symmetric full connected layers,
e.g., a one layer network sharing the weights

The role of convolutional layers:

approximation capability
A question: Are network composed by convolutional layers universal
approximators?

� That consider a network composed of convolutional layers and
consider a feature among those in feature maps: can be the map
from inputs to such a feature approximate any function?

The answer

� Yes, with the following remarks

� The feature map can be only a function of its receptive field

� A sufficient number of feature maps in previous layers must be
used
(feature maps play the role of hidden nodes in feedforward
neural networks)

The role of convolutional layers:

approximation capability
Notice

� From approximation viewpoint, the single features of a feature
map are not restricted

� In theory, a single feature is sufficient to compute any function
of the input image!

� In practice, in order to compute a complex function of the input
maps would require a large number of feature maps

• Better tp have a single large full connected network!

Bibliography

� Auer, P., Herbster, M., & Warmuth, M. K. (1996). Exponentially
many local minima for single neurons. In Advances in neural
information processing systems (pp. 316-322).

� Baldi, P., & Hornik, K. (1989). Neural networks and principal
component analysis: Learning from examples without local
minima. Neural networks, 2(1), 53-58.

� Bartlett, P. L. (1998). The sample complexity of pattern
classification with neural networks: the size of the weights is
more important than the size of the network. IEEE transactions
on Information Theory, 44(2), 525-536.

Bibliography

� Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-
term dependencies with gradient descent is difficult. IEEE
transactions on neural networks, 5(2), 157-166.

� Bianchini, M., Gori, M., & Maggini, M. (1994). On the problem of
local minima in recurrent neural networks. IEEE Transactions on
Neural Networks, 5(2), 167-177.

� Bianchini, M., & Gori, M. (1996). Optimal learning in artificial
neural networks: A review of theoretical results.
Neurocomputing, 13(2-4), 313-346.

� Bianchini, M., & Scarselli, F. (2014). On the complexity of neural
network classifiers: A comparison between shallow and deep
architectures. IEEE transactions on neural networks and
learning systems, 25(8), 1553-1565.

� Barron, A. R. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions on
Information theory, 39(3), 930-945.

Bibliography

� Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function. Mathematics of control, signals and systems,
2(4), 303-314.

� Hammer, B. (2000). On the approximation capability of recurrent
neural networks. Neurocomputing, 31(1-4), 107-123.

� Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural
networks, 2(5), 359-366.

� Funahashi, K. I. (1989). On the approximate realization of
continuous mappings by neural networks. Neural networks, 2(3),
183-192.

Bibliography

� Gori, Marco, and Alberto Tesi. "On the problem of local minima
in backpropagation." IEEE Transactions on Pattern Analysis and
Machine Intelligence 14.1 (1992): 76-86.

� Gori, M., & Scarselli, F. (1998). Are multilayer perceptrons
adequate for pattern recognition and verification?. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20(11), 1121-1132.

� Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning
machine: theory and applications. Neurocomputing, 70(1-3),
489-501.

� Judd, J. S. (1990). Neural network design and the complexity of
learning. MIT press.

Bibliography
� Lawrence, S., Tsoi, A. C., & Giles, C. L. (1996, June). Local

minima and generalization. In Neural Networks, 1996., IEEE
International Conference on (Vol. 1, pp. 371-376). IEEE.

� Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J.
(2001). Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies.

� Scarselli, F., & Tsoi, A. C. (1998). Universal approximation using
feedforward neural networks: A survey of some existing
methods, and some new results. Neural networks, 11(1), 15-37.

� Shawe-Taylor, J. (1993). Symmetries and discriminability in
feedforward network architectures. IEEE Transactions on Neural
Networks, 4(5), 816-826.

� Yu, X. H., & Chen, G. A. (1995). On the local minima free
condition of backpropagation learning. IEEE Transactions on
Neural Networks, 6(5), 1300-1303.

� Vapnik, V. N. (1999). An overview of statistical learning theory.
IEEE transactions on neural networks, 10(5), 988-999.

Thank you for your attention!

