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Graph neural networks

Graph Neural Networks 
(GNNs)

The main idea

 graphs are an extension of sequences

 Recurrent networks operate on 
sequences of data

 graphs are irregular grids

 Convolutional networks operate on grids 
of data

 GNNs a class neural network models that 
extend both recurrent networks and 
convolutional networks and operates on 
graphs
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Graphs: they are a general tool 
to represent data

In any software

 Graphs  can represent entities, their relationships and their 
information

In machine learning, two types of domains

 Graph focused: each graph represents a complex pattern made 
by parts with their interecation

 The goal is usually that of predicting some property of the 
whole graph

 Links represent friendships (may have attached information)

 Node/edge focused: each graph represents a set of patterns with 
their relationships

 The goal is usually that predicting some property of a 
node/edge

Graphs: they are a general tool 
to represent data

 Social networks 

 Nodes represent users (may have attached information)

 Links represent friendships (may have attached information)

 Predicting friendships is an edge focused application

 Protein networks

 Node stand for proteins (may have attached information)

 Edges denote their possible interaction (may have attached 
information)

 Predicting protein property is anode focused application

 Molecules

 Nodes stand for atoms (may have attached information)

 Edges stand for physically close atoms or those atoms having 
an atomic interaction (may have attached information)

 Predicting molecules property is graph focused application
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Graph Neural Networks 
(GNNs)

 First models for graph processing introduced in 90es

 Mainly for graph focused applications

 GNN is a class of models for graph processing

 In the following, first I introduce the original model and then I 
explain   how this  has been modified

GNNs can be defined by 
extending recurrent
networks

Remember the unfolding network

 I recurrent networks, we have a transaction network fw and an 
output network gw

 A copy of fw, gw for each time instance, connected in sequence
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GNNs can be defined by 
extending recurrent networks

We still have two neural networks

 An aggregation funtion fw for 
computing a node state z

 A gw for computing a node output

 Then, we unfold the graph and we get
the encoding network
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fw fw
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GNNs can be defined by 
extending recurrent networks

For a general graph, we can construct the 
encoding network
 The xi are the feature vectors attached to nodes (the 

node information)

 The edges represent the relationship between patterns

 The oi are the network output

 The zi are an internal state representation for the node

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2

z3

Input graph
Encoding network

x1
x1

x4

x4

x3

x3

x2

x2

246

247



5
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GNNs: computing the states

 The state zn of a node are computed by 
combining the information on node
neigborhood

 In the original model, we used

where hw is a three layer
neural network

 but, several other networks are now used .. 
back on this later

f Node state zv

x3

x2

x4

x6

x7

x5

The neighborhood 
of this  node

𝑧௩ = ∑ 𝑛 → 𝑣ℎw(𝑥, 𝑧)

249

GNNs: computing the outptut

 The state on of a node are computed from 
the states zn

 In the original model, we used

where gw is a three layer neural network

 but, several other networks are now used
and sometime is just not used…. back on 
this later

g Node output ov

𝑜௩ = 𝑔w(𝑥௩, 𝑧௩)

248

249



6

Computing GNN outputs

The enconding network is cyclic … how are outputs computed?

1. Set initial states z(t)=0 

2. Repeat

3. activate units f to compute
new states z(t+1)  

4. Until z(t) do not change any more 

5. activate units g to compute outputs

fw
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z1z1
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x1
x4
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Computing GNN outputs

The enconding network is cyclic …

 Does the forward phase always converge?

 Does the forward phase always converge to 
the same state despite the initial state?

Yes

 The original GNNs adopt a mechanism based
on contraction systems 
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A mathematical point of view

Consider the whole encoding network as 
adynamic system/system of equation  does the 
system always converge/ does the system has a 
unique solution?

 Yes, provided that it is a contraction, i.e, if the 
norm of the Jacobian is smaller than 

𝜕𝐹(𝑙, 𝑍)

𝜕𝑍
< 1

 The original GNNs adopt a mechanism which 
keep the Jacobian small during learning

𝑍(𝑡) = 𝐹(𝑋, 𝑍(𝑡))  

Computing GNN gradient

Based on unfolding of encoding network 

 The encoding network is unfolded through time

 The result is a feedforward network equivalent to 
the encoding network

 The gradient is computed on the unfolding using 
backpropagation through time algorithm
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The unfolding of  the 
encoding network
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fw fw
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The encoding
network
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Graph

The unfolding network

The unfolding network defines how the output of the 
GNN is computed: In the original GNN model

 In each time layer there is a copy of fw for each 
node of the graph

 Inside the layers, the fw are not connected, 
through the layers the fw are connected according 
to the graph connectivity

 The parameters of the fw are shared among the 
layers

 The number of layers depend on the onvergence
time I

 By changing some of those assumptions, we get 
the modern GNNs
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Modern GNNs
 Almost all of them

 Fix the number of layers

 Use different parameter set on each layer

 Adopt novel aggregation function w.r.t. the 
orginal model

 Two big classes

 Graph Convolutional Networks

 Recursive GNNs

Graph Convolutional
Networs (GCNs)

 Fix the number of layers (iterations)

 Use different parameter set on each layer

 Remove the direct input to the internal layers

 Now, the unfolding network looks like a deep 
network
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An example: the first CGN by Kipf
and Welling

 z is initialized with the input features

 The weight matrix 𝑊𝑘 is normalized by column 
and rows

 The aggregation function is

𝑧𝑣(0) =lv

𝑧𝑣(𝑘) =  𝑟𝑒𝑙𝑢(
𝑧𝑛 𝑘 − 1  𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

 
)

→௩

Recursive Graph Neural
Networks (RGNNs)

 Fix the number of layers (iterations)

 Use different parameter set on each layer

 Keep the direct input to the internal layers

 Good architecture for dynamic GNNs!
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An example: Gated Graph Neural
Networks

 A GRU unit is used to combine the features 
over the layers

𝑧𝑣(𝑘) = 𝐺𝑅𝑈 𝑧𝑣 𝑘 − 1 ,  𝑧𝑛 𝑘 − 1 ,

→௩

GNNs: another observation
 You may assume that each feature corresponds to a graph in 

a layer

 Nodes between layers are connected according to graph
connectivity
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GNNs: another observation
 The unfolding of Graph Convolutional networks resembles

common convolution networks, with the difference that CNs
operates on grids
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GCNs are sort of convolutional
neural networks

 In convolutional networks, a kernel is applied to each
point n of a receptive field of  an image 

 The oputput of the kernel is

 In a CGN or a GNN, an aggregation function is used to 
combine the contributions of the neigbours, e.g.

𝑧𝑣(𝑘) =  𝑟𝑒𝑙𝑢(𝑧𝑛 𝑘 − 1 𝑊𝑘, 𝑛 − 𝑣)

  ௗ[௩]

𝑧𝑣(𝑘) =  𝑟𝑒𝑙𝑢(
𝑧𝑛 𝑘 − 1  𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

 
)

→௩
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About expressive power of 
GNNs

 Which applications on graph can GNNs implement?

 Two different questions to answer

 Which graphs/nodes a GNN can distinguish?

 Which functions a GNN can approximate?

 Intuitive preliminar response: GNNs can distinguish
all the graphs and are universal approximators
except for

 the limits due to local computation framework

 provided a sufficiently complex aggregation
function is used

Local computation limit: 
intuitive version

 A GNN process the graph locally:

 if two nodes have the same neighboorhood, then they look 
equal to the GNN

 If all the nodes of two graphs have the same neighborhood, the 
two graphs look equal to the GNN
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Local computation limit: 
unfolding trees
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 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 ....

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n 

Unfolding tree

 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 ….

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n 

x1 

x2

x3

x3

x1

x1

x2
x1 x3x3

x1

Z1(0)=

Z1(1)=
Z1(2)= Input 

graph
x2

266

267



15
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The unfolding equivalence

Unfolding tree

n The unfolding tree Tv
d is the tree obtained by unfolding the graph starting in v up 

to d levels

Unfolding equivalence

n two nodes are unfolding equivalent  nv if Tn
d =Tv

d holds for every  d

a b

a c

a

ba

ab caa

: : : : : : : :

c

b

caa

: :

equivalent

non-equivalent

a

ba

ab caa

: : : :

Limit of local computation 
framework

Formally,

 GNNs cannot distinguish unfolding equivalent nodes

Intuitively

 Two copies of the same node or two different nodes with the same
features?

 The unfolding trees may contain copies of the same nodes due to 
cycles and the bidirectional links

 The GNN is not able to distinguish between two copies of the same
node from  two different nodes with the same features
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Limit of local computation: 
Weisfeler-Lehman test

Weisfeler-Lehman test (1-WL)

 An algorithm to test whether two graphs are isomorphic or not

 Based on a signature obtained by assigning colors to each node

 Colors are defined iteratively on the base of a local mehanishm

 The algorithm stops when colors do not changes

 Notice: 1-WL may fail to recognize that two graphs are not isomorphic

𝑐𝑣(0) =HASH(lv )
𝑐𝑣 𝑘 = 𝐻𝐴𝑆𝐻(𝑐𝑣 𝑘 − 1 , {𝑐𝑛(𝑘 − 1)|𝑛𝑛𝑒[𝑣]})

Weisfeler-Lehman test
 Step 0  …. 

 In those graphs we assume that all nodes have the same
inpute features l1=l2….
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Weisfeler-Lehman test
 Step 1  …. 

Weisfeler-Lehman test
 Step 2  …. 
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Limit of local computation: 
Weisfeler-Lehman test

I has been proved that

 GNNs cannot be better than 1-WL

 They cannot distinguish graphs that cannot be distingued by 1-WL

I has been proved that

 1-WL equivalence and unfolding equivalence are equal

Capabilities of GNN

 Can a GNN be as powerful as 1-WL?

 Can a GNN be able to store the unfolding tree into node featues

 The answer is positive to both questions provided aggregation
function is sufficiently general  to simulate 1-WL / unfolding tree
construction

We will consider GNNs in the form of

which includes most of modern Convolutional GCNs

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 :  𝑣 → 𝑛

readout(zv1,….,)
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GNNs are as powerful as 1-WL
Xu et al.

 If 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 aggregates recursively the children features  

 if 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔, and 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 are injective

 then the GNN produces an embedding of the graphs 

 that is  equivalent to the embedding produced by Weisfeiler-

Lehman test in order to recognize whether the graphs are 

isomorphic or not 

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 :  𝑣 → 𝑛

readout(zv1,….,)

GNNs can store the unfolding 
trees

 If 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 construct recursively the unfolding trees   

 if 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔, are injective  (each tree is mapped to a different 

coding)

 It is a consequence of the equivalence between unfolding 

equivalence and 1-WL

 But there are also constructive proofs

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 :  𝑣 → 𝑛
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About GNN approximation
capability

 Which funtions on graph can GNNs approximate?

 Let us consider a function  that takes in input a 
graph G and return a real output (G,n) for some 
node n

 Answer 1.0 

A GNN model, can approximate any function modulo 
the limits due to local computation mechanism

About GNN approximation
capability

Intuitive idea of the proof

 We adopt the same reasoning we used for recurrent
networks

 If the comb, agg function can store into features a 
coding  of the graph (the unfolding tree)

 then readout can decode the emcoding and 
produce any desired ouput

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 :  𝑣 → 𝑛

(G,n) =readout(zv1,….,)
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280

Functions that preserve the 
unfolding equivalence

Functions that preserve the unfolding equivalence/ 1-WL

 A function : GNRm preserves the unfolding equivalence/  1-WL  if

nv implies (G,n)=(G,v)

Example

 a function that preserves the unfolding equivalence has the some output on 
a uniform graph where all the node has the same labels

4
44

4 4
4

4
44

4 4
4 Black nodes = output 1

White nodes = output 0
it preserves the
unfolding
equivalences it does not preserve 

unfolding equivalences

281

About GNN approximation
capability

 GNNs can approximate any function that preserves the unfolding 

equivalence/1-WL

 The result holds for original GNN model and modern GNNs

 The result holds in probability for measurable functions (D’Inverno & Alt.) 

and also for any continuous functions (Azizian & Alt.)
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Which aggregation functions?
Advanced question

 We would like to get some details about the aggregation and the 

output function we should use

Recall main idea

 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 construct recursively the unfolding trees   

 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔, are injective  (each tree is mapped to a different 

coding)

 readout decodes representation and produce output

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 :  𝑣 → 𝑛

(G,n) =readout(zv1,….,)

Which aggregation function?
 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 construct recursively the unfolding trees   

 readout decodes representation and produce output

 then, the comb+aggregation and read function should have at 

least two  layers (one hidden layer)

 but most modern GNNs exploit just a single layer, e.g. in 

CGN

 The advantage is in the fact that using a single layer 

makes the architecture simpler, faster, and improves 

generalization 

 A big advantage for applications with a lot of features

𝑧𝑣(𝑘) =  𝑟𝑒𝑙𝑢(
𝑧𝑛 𝑘 − 1  𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

 
)

→௩
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Which aggregation function?

𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 and readout  are injective

 But some modern GNNs exploit AVERAGE, MAX.  In this 

case, 𝑥𝑜𝑚𝑏, 𝑎𝑔𝑔 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 are not injective. 

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 :  𝑣 → 𝑛

(G,n) =readout(zv1,….,)

Which aggregation function?
An other case

 the average (normalization) may be useful to avoid that the 

gradient become smaller during back propagation 

 but with  average, you cannot count, e.g. the number of children 

of a nodes

 If your target application is to recognize the users that have a 

lot of friends in a a social network, using AVERAGE in your 

aggragation function is nota good idea! 
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Back to what GNNs cannot 
approximate

 GNNs cannot do better than 1-WL, namely they must preseserve unfolding 

equivalence

 Notice that such a behaviour may not be a limitation 

 two concepts having the same labels and the same relationships with the 

other concepts provide the same information:

 why those concepts should be distinguished

 with an appropriate modification of the graphs, a functions may preserve the 

unfolding equivalence

• f.i. an extreme example all the labels of the input graph are distinct 

labels

287

A funny experiment about GNN 
approximation properties

A GNN produces the same result on a uniform graphs but … 

 if a noise is introduced into the labels, the nodes become distinguishable 

and, in theory, GNNs can implement any function 

 is it possible to learn a GNN that return -1 for a half of the nodes (white 

nodes) and 1 for the other half (black nodes)?

2

10

4

8

7

5

a random label

output is 1

output is 0
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A funny experiment on GNN 
approximation properties

300 random uniform graphs 

 random labels 

 the error was measured by the difference between the desired number of 
black nodes on those obtained by the GNN

 results were compared with those obtained by random process and a 
feedforward neural network

289

Beyond 1-WL: Weisfeiler-
Lehman hierachy

 Weisfeiler-Lehman hierarchy

 1-WL exploits single nodes

 k-WL exploits k-tuples of nodes

 k-WL is more powerful than (k-1)-WL 
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k-WL
 k-tuple of nodes T=(v1,..vk)

 j-th neighbourhood of the tuple: replace the j-th node with any other node in 

graph

 Nj(T)={(v1,..,vj-1,n,vj+1….vk): n N }

The algorithm

 Inizialize each tuple color, using node features and local connectivity

 Iterate

• Compute neighborhoods for each j

• Calculate using new colors using colors of previous neighboroods

cT(0) =HASH(G, lv ) 
cT

j k ={cH k − 1 |H  Nj(V)} for each j
cT k = HASH(cT k − 1 , { CH

1, … C𝐻
𝑘}}

Going beyond GNNs
The general idea

 replace nodes with tuples of nodes

 use the tuple neighbourhood defined so as in the above slide

𝑧்(𝑘) = comb𝑘 𝑧் 𝑘 − 1 , agg𝑘 𝑧𝐻 𝑘 − 1 : 𝐻𝑛𝑒[𝑇]

readout(zT1,….,)

k-tuple of nodes T=(v1,..vk)
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Going beyond GNNs
An example (Morris &Alt)

 ne[T] may consider

 local neighbourhood for decreasing complexity

(tuples which differ for two nodes linked by edges)

 global neighbourhood 

𝑧்(𝑘) = relu 𝑧் 𝑘 − 1 𝑊1
𝑘 +  𝑧𝐻 𝑘 − 1 𝑊2

𝑘

ு[்]

k-tuple of nodes T=(v1,..vk)

Going beyond GNNs
An example (Morris &Alt)

It has been proved that

 Such a model can distinguish graphs so as k-WL

 More powerful than  standard GNN

Obviously, it is not a local model

 more powerful, may be less generalizzation

𝑧்(𝑘) = relu 𝑧் 𝑘 − 1 𝑊1
𝑘 +  𝑧𝐻 𝑘 − 1 𝑊2

𝑘

ு[்]

k-tuple of nodes T=(v1,..vk)
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Generalization in GNNs:
VCD on graphs

 shattering on graphs

 A set of graphs with their nodes (G1,v1)…. (Gk,vk)

 An assignament ( (G1,v1) +1) …. ((Gk,vk), -1)

 A GNN shatters a set (G1,v1)…. (Gk,vk), if it can produce any 

assignament

 VCD is maximal dimension of a set shattered by a GNN

Generalization in GNNs

 From a theoretical view point, there are few results 

generalization in GNNs

 One for the old GNN model (Scarselli, Tsoi, et al)

• Based on Vapnik-Chernovenkis

• The bounds are similar to the of  other networks

• Surprisingly, the length of unfolding in time does not play 

any role: this may be due to converge of the GNN model
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Generalization in GNNs

 From a theoretical view point, there are few results 

generalization in GNNs

 One for modern GNNs (Garg et al.)

• Based on Rademacher complexity (not studied here)

• The bound depend on the lenth of unfolding

• Similar to that or recurrent networks
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Bound on VCD dimension of 
the orginal GNNs

Activation Bound

Graphs (GNNs and non–positional RecNNs)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Sequences (recurrent networks)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Vectors (multialyer neural networks)

Polynomial O(p log(p) )

Tanh, logsig, atan O(p4)

p=number of 
paramters

N=number of
graph nodes
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Bound on Rademacher 
complexity of some modern 
GNNs

GNNs RNNs

C<1/d
O

ௗ

 O



C=1/d

O
ௗ

 O



C>1/d

O
ௗ 

 O
 



d=brancing factor
r=state dimension
L=depth
m=sample size
γ= margin used in 
the margine loss

C = a sort of 
Lipschitz constant
for aggregation

Generalization in GNNs in 
practice

 Depending on the application, the generalization in GNNs is 

difficult to control

 Test distribution must be same as training distribution both 

for node features and node connectivity

 For complex applications, a lot of data may be required
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Thank you for your attention!
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Lecture of September 20th
 The lecture will start at 9.00 am

 We will have a test

 Written

 Close answers

 About 1,5 hour time to complete

 The test is mandatory for students of Smart Computing PhD 
who want to have to pass an exam to have the credits,

 but it is open to anybody

 After the test, we will discuss the responses, thus this will be 
used as a course summarization
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