
1

Graph neural networks

Graph Neural Networks
(GNNs)

The main idea

 graphs are an extension of sequences

 Recurrent networks operate on
sequences of data

 graphs are irregular grids

 Convolutional networks operate on grids
of data

 GNNs a class neural network models that
extend both recurrent networks and
convolutional networks and operates on
graphs

v3v1

v4

v6

v7

v5

v2

v1 v2
v3 v3

v9 v10
v11 v12

v1 v2
v3 v3

v5 v6
v7 v8

v9 v10
v11 v12

240

241

2

Graphs: they are a general tool
to represent data

In any software

 Graphs can represent entities, their relationships and their
information

In machine learning, two types of domains

 Graph focused: each graph represents a complex pattern made
by parts with their interecation

 The goal is usually that of predicting some property of the
whole graph

 Links represent friendships (may have attached information)

 Node/edge focused: each graph represents a set of patterns with
their relationships

 The goal is usually that predicting some property of a
node/edge

Graphs: they are a general tool
to represent data

 Social networks

 Nodes represent users (may have attached information)

 Links represent friendships (may have attached information)

 Predicting friendships is an edge focused application

 Protein networks

 Node stand for proteins (may have attached information)

 Edges denote their possible interaction (may have attached
information)

 Predicting protein property is anode focused application

 Molecules

 Nodes stand for atoms (may have attached information)

 Edges stand for physically close atoms or those atoms having
an atomic interaction (may have attached information)

 Predicting molecules property is graph focused application

242

243

3

Graph Neural Networks
(GNNs)

 First models for graph processing introduced in 90es

 Mainly for graph focused applications

 GNN is a class of models for graph processing

 In the following, first I introduce the original model and then I
explain how this has been modified

GNNs can be defined by
extending recurrent
networks

Remember the unfolding network

 I recurrent networks, we have a transaction network fw and an
output network gw

 A copy of fw, gw for each time instance, connected in sequence

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

fw gw
z(t)

x(t)

z(t)

o(t)

x(0) x(1) x(2) x(3) x(T)

244

245

4

GNNs can be defined by
extending recurrent networks

We still have two neural networks

 An aggregation funtion fw for
computing a node state z

 A gw for computing a node output

 Then, we unfold the graph and we get
the encoding network

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2

z3

Input graph
Encoding network

x1
x1

x4

x4

x3

x3

x2

x2

fw

gw

z

o

GNNs can be defined by
extending recurrent networks

For a general graph, we can construct the
encoding network
 The xi are the feature vectors attached to nodes (the

node information)

 The edges represent the relationship between patterns

 The oi are the network output

 The zi are an internal state representation for the node

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2

z3

Input graph
Encoding network

x1
x1

x4

x4

x3

x3

x2

x2

246

247

5

248

GNNs: computing the states

 The state zn of a node are computed by
combining the information on node
neigborhood

 In the original model, we used

where hw is a three layer
neural network

 but, several other networks are now used ..
back on this later

f Node state zv

x3

x2

x4

x6

x7

x5

The neighborhood
of this node

𝑧௩ = ∑ 𝑛 → 𝑣ℎw(𝑥, 𝑧)

249

GNNs: computing the outptut

 The state on of a node are computed from
the states zn

 In the original model, we used

where gw is a three layer neural network

 but, several other networks are now used
and sometime is just not used…. back on
this later

g Node output ov

𝑜௩ = 𝑔w(𝑥௩, 𝑧௩)

248

249

6

Computing GNN outputs

The enconding network is cyclic … how are outputs computed?

1. Set initial states z(t)=0

2. Repeat

3. activate units f to compute
new states z(t+1)

4. Until z(t) do not change any more

5. activate units g to compute outputs

fw

fw fw

fw

z2

z4

z3

gw o3gwo2

gwo1 gw
o4z1

z1

z1z1
z2

z2
z3

Encoding network

x1
x4

x3x2

Computing GNN outputs

The enconding network is cyclic …

 Does the forward phase always converge?

 Does the forward phase always converge to
the same state despite the initial state?

Yes

 The original GNNs adopt a mechanism based
on contraction systems

250

251

7

A mathematical point of view

Consider the whole encoding network as
adynamic system/system of equation does the
system always converge/ does the system has a
unique solution?

 Yes, provided that it is a contraction, i.e, if the
norm of the Jacobian is smaller than

𝜕𝐹(𝑙, 𝑍)

𝜕𝑍
< 1

 The original GNNs adopt a mechanism which
keep the Jacobian small during learning

𝑍(𝑡) = 𝐹(𝑋, 𝑍(𝑡))

Computing GNN gradient

Based on unfolding of encoding network

 The encoding network is unfolded through time

 The result is a feedforward network equivalent to
the encoding network

 The gradient is computed on the unfolding using
backpropagation through time algorithm

252

253

8

The unfolding of the
encoding network

fw

fw fw

z2

gw
o3gwo2

gwo1

x2

z1

z1z1
z2

z2

z3

x1

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

The encoding
network

x1

x2

x3

Graph

The unfolding network

The unfolding network defines how the output of the
GNN is computed: In the original GNN model

 In each time layer there is a copy of fw for each
node of the graph

 Inside the layers, the fw are not connected,
through the layers the fw are connected according
to the graph connectivity

 The parameters of the fw are shared among the
layers

 The number of layers depend on the onvergence
time I

 By changing some of those assumptions, we get
the modern GNNs

254

255

9

Modern GNNs
 Almost all of them

 Fix the number of layers

 Use different parameter set on each layer

 Adopt novel aggregation function w.r.t. the
orginal model

 Two big classes

 Graph Convolutional Networks

 Recursive GNNs

Graph Convolutional
Networs (GCNs)

 Fix the number of layers (iterations)

 Use different parameter set on each layer

 Remove the direct input to the internal layers

 Now, the unfolding network looks like a deep
network

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

256

257

10

An example: the first CGN by Kipf
and Welling

 z is initialized with the input features

 The weight matrix 𝑊𝑘 is normalized by column
and rows

 The aggregation function is

𝑧𝑣(0) =lv

𝑧𝑣(𝑘) = 𝑟𝑒𝑙𝑢(
𝑧𝑛 𝑘 − 1 𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

)

→௩

Recursive Graph Neural
Networks (RGNNs)

 Fix the number of layers (iterations)

 Use different parameter set on each layer

 Keep the direct input to the internal layers

 Good architecture for dynamic GNNs!

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

258

259

11

An example: Gated Graph Neural
Networks

 A GRU unit is used to combine the features
over the layers

𝑧𝑣(𝑘) = 𝐺𝑅𝑈 𝑧𝑣 𝑘 − 1 , 𝑧𝑛 𝑘 − 1 ,

→௩

GNNs: another observation
 You may assume that each feature corresponds to a graph in

a layer

 Nodes between layers are connected according to graph
connectivity

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

x1

x2
x3

x1

x2
x3

x1

x2 x3

x1

x2
x3

x1

x2
x3

x1

x2
x3

x1

x2
x3 x1

x2 x3

x1

x2 x3

x1

x2
x3

x1

x2
x3

x1

x2 x3

x1

x2
x3

260

261

12

GNNs: another observation
 The unfolding of Graph Convolutional networks resembles

common convolution networks, with the difference that CNs
operates on grids

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

1

1

1

1

1

1

1

1

1

1

1

1

GCNs are sort of convolutional
neural networks

 In convolutional networks, a kernel is applied to each
point n of a receptive field of an image

 The oputput of the kernel is

 In a CGN or a GNN, an aggregation function is used to
combine the contributions of the neigbours, e.g.

𝑧𝑣(𝑘) = 𝑟𝑒𝑙𝑢(𝑧𝑛 𝑘 − 1 𝑊𝑘, 𝑛 − 𝑣)

 ௗ[௩]

𝑧𝑣(𝑘) = 𝑟𝑒𝑙𝑢(
𝑧𝑛 𝑘 − 1 𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

)

→௩

262

263

13

About expressive power of
GNNs

 Which applications on graph can GNNs implement?

 Two different questions to answer

 Which graphs/nodes a GNN can distinguish?

 Which functions a GNN can approximate?

 Intuitive preliminar response: GNNs can distinguish
all the graphs and are universal approximators
except for

 the limits due to local computation framework

 provided a sufficiently complex aggregation
function is used

Local computation limit:
intuitive version

 A GNN process the graph locally:

 if two nodes have the same neighboorhood, then they look
equal to the GNN

 If all the nodes of two graphs have the same neighborhood, the
two graphs look equal to the GNN

264

265

14

Local computation limit:
unfolding trees

fw

fw

fw

fw

fw

fw

z1(0)

z2(0)

fw

fw

fw

z1(1)

z2(1)

fw

fw

fw

z1(T-1)

z2(T-1)

fw

fw

fw

gw

gw

gw

o1

o2

o3

Time 0 Time 1 Time 2 Time T-1 Time T-1

x1

x2

x3

 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n

Unfolding tree

 The state zn(0) can contain only info about the features of node n

 The state zn(1) can contain only info about node n and of its neighboors

 The state zn(2) can contain only info about node n, about its neigboors
and its neighboors of neighboors

 ….

 The best you can do, it is to store store in zn(k) the unfolding tree:
a tree of k levels corresponding to the unfolding of the graph w.r.t. n

x1

x2

x3

x3

x1

x1

x2
x1 x3x3

x1

Z1(0)=

Z1(1)=
Z1(2)= Input

graph
x2

266

267

15

268

The unfolding equivalence

Unfolding tree

n The unfolding tree Tv
d is the tree obtained by unfolding the graph starting in v up

to d levels

Unfolding equivalence

n two nodes are unfolding equivalent nv if Tn
d =Tv

d holds for every d

a b

a c

a

ba

ab caa

: : : : : : : :

c

b

caa

: :

equivalent

non-equivalent

a

ba

ab caa

: : : :

Limit of local computation
framework

Formally,

 GNNs cannot distinguish unfolding equivalent nodes

Intuitively

 Two copies of the same node or two different nodes with the same
features?

 The unfolding trees may contain copies of the same nodes due to
cycles and the bidirectional links

 The GNN is not able to distinguish between two copies of the same
node from two different nodes with the same features

268

269

16

Limit of local computation:
Weisfeler-Lehman test

Weisfeler-Lehman test (1-WL)

 An algorithm to test whether two graphs are isomorphic or not

 Based on a signature obtained by assigning colors to each node

 Colors are defined iteratively on the base of a local mehanishm

 The algorithm stops when colors do not changes

 Notice: 1-WL may fail to recognize that two graphs are not isomorphic

𝑐𝑣(0) =HASH(lv)
𝑐𝑣 𝑘 = 𝐻𝐴𝑆𝐻(𝑐𝑣 𝑘 − 1 , {𝑐𝑛(𝑘 − 1)|𝑛𝑛𝑒[𝑣]})

Weisfeler-Lehman test
 Step 0 ….

 In those graphs we assume that all nodes have the same
inpute features l1=l2….

270

271

17

Weisfeler-Lehman test
 Step 1 ….

Weisfeler-Lehman test
 Step 2 ….

272

273

18

Limit of local computation:
Weisfeler-Lehman test

I has been proved that

 GNNs cannot be better than 1-WL

 They cannot distinguish graphs that cannot be distingued by 1-WL

I has been proved that

 1-WL equivalence and unfolding equivalence are equal

Capabilities of GNN

 Can a GNN be as powerful as 1-WL?

 Can a GNN be able to store the unfolding tree into node featues

 The answer is positive to both questions provided aggregation
function is sufficiently general to simulate 1-WL / unfolding tree
construction

We will consider GNNs in the form of

which includes most of modern Convolutional GCNs

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 : 𝑣 → 𝑛

readout(zv1,….,)

274

275

19

GNNs are as powerful as 1-WL
Xu et al.

 If 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 aggregates recursively the children features

 if 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔, and 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 are injective

 then the GNN produces an embedding of the graphs

 that is equivalent to the embedding produced by Weisfeiler-

Lehman test in order to recognize whether the graphs are

isomorphic or not

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 : 𝑣 → 𝑛

readout(zv1,….,)

GNNs can store the unfolding
trees

 If 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 construct recursively the unfolding trees

 if 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔, are injective (each tree is mapped to a different

coding)

 It is a consequence of the equivalence between unfolding

equivalence and 1-WL

 But there are also constructive proofs

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 : 𝑣 → 𝑛

276

277

20

About GNN approximation
capability

 Which funtions on graph can GNNs approximate?

 Let us consider a function that takes in input a
graph G and return a real output (G,n) for some
node n

 Answer 1.0

A GNN model, can approximate any function modulo
the limits due to local computation mechanism

About GNN approximation
capability

Intuitive idea of the proof

 We adopt the same reasoning we used for recurrent
networks

 If the comb, agg function can store into features a
coding of the graph (the unfolding tree)

 then readout can decode the emcoding and
produce any desired ouput

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 : 𝑣 → 𝑛

(G,n) =readout(zv1,….,)

278

279

21

280

Functions that preserve the
unfolding equivalence

Functions that preserve the unfolding equivalence/ 1-WL

 A function : GNRm preserves the unfolding equivalence/ 1-WL if

nv implies (G,n)=(G,v)

Example

 a function that preserves the unfolding equivalence has the some output on
a uniform graph where all the node has the same labels

4
44

4 4
4

4
44

4 4
4 Black nodes = output 1

White nodes = output 0
it preserves the
unfolding
equivalences it does not preserve

unfolding equivalences

281

About GNN approximation
capability

 GNNs can approximate any function that preserves the unfolding

equivalence/1-WL

 The result holds for original GNN model and modern GNNs

 The result holds in probability for measurable functions (D’Inverno & Alt.)

and also for any continuous functions (Azizian & Alt.)

280

281

22

Which aggregation functions?
Advanced question

 We would like to get some details about the aggregation and the

output function we should use

Recall main idea

 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 construct recursively the unfolding trees

 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔, are injective (each tree is mapped to a different

coding)

 readout decodes representation and produce output

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 : 𝑣 → 𝑛

(G,n) =readout(zv1,….,)

Which aggregation function?
 𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 construct recursively the unfolding trees

 readout decodes representation and produce output

 then, the comb+aggregation and read function should have at

least two layers (one hidden layer)

 but most modern GNNs exploit just a single layer, e.g. in

CGN

 The advantage is in the fact that using a single layer

makes the architecture simpler, faster, and improves

generalization

 A big advantage for applications with a lot of features

𝑧𝑣(𝑘) = 𝑟𝑒𝑙𝑢(
𝑧𝑛 𝑘 − 1 𝑊𝑘

𝑛𝑒[𝑣] |𝑛𝑒[𝑛]|

)

→௩

282

283

23

Which aggregation function?

𝑐𝑜𝑚𝑏, 𝑎𝑔𝑔 and readout are injective

 But some modern GNNs exploit AVERAGE, MAX. In this

case, 𝑥𝑜𝑚𝑏, 𝑎𝑔𝑔 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 are not injective.

𝑧௩(𝑘) = comb𝑘 𝑧௩ 𝑘 − 1 , agg𝑘 𝑧𝑛 𝑘 − 1 : 𝑣 → 𝑛

(G,n) =readout(zv1,….,)

Which aggregation function?
An other case

 the average (normalization) may be useful to avoid that the

gradient become smaller during back propagation

 but with average, you cannot count, e.g. the number of children

of a nodes

 If your target application is to recognize the users that have a

lot of friends in a a social network, using AVERAGE in your

aggragation function is nota good idea!

284

285

24

286

Back to what GNNs cannot
approximate

 GNNs cannot do better than 1-WL, namely they must preseserve unfolding

equivalence

 Notice that such a behaviour may not be a limitation

 two concepts having the same labels and the same relationships with the

other concepts provide the same information:

 why those concepts should be distinguished

 with an appropriate modification of the graphs, a functions may preserve the

unfolding equivalence

• f.i. an extreme example all the labels of the input graph are distinct

labels

287

A funny experiment about GNN
approximation properties

A GNN produces the same result on a uniform graphs but …

 if a noise is introduced into the labels, the nodes become distinguishable

and, in theory, GNNs can implement any function

 is it possible to learn a GNN that return -1 for a half of the nodes (white

nodes) and 1 for the other half (black nodes)?

2

10

4

8

7

5

a random label

output is 1

output is 0

286

287

25

288

A funny experiment on GNN
approximation properties

300 random uniform graphs

 random labels

 the error was measured by the difference between the desired number of
black nodes on those obtained by the GNN

 results were compared with those obtained by random process and a
feedforward neural network

289

Beyond 1-WL: Weisfeiler-
Lehman hierachy

 Weisfeiler-Lehman hierarchy

 1-WL exploits single nodes

 k-WL exploits k-tuples of nodes

 k-WL is more powerful than (k-1)-WL

288

289

26

k-WL
 k-tuple of nodes T=(v1,..vk)

 j-th neighbourhood of the tuple: replace the j-th node with any other node in

graph

 Nj(T)={(v1,..,vj-1,n,vj+1….vk): n N }

The algorithm

 Inizialize each tuple color, using node features and local connectivity

 Iterate

• Compute neighborhoods for each j

• Calculate using new colors using colors of previous neighboroods

cT(0) =HASH(G, lv)
cT

j k ={cH k − 1 |H Nj(V)} for each j
cT k = HASH(cT k − 1 , { CH

1, … C𝐻
𝑘}}

Going beyond GNNs
The general idea

 replace nodes with tuples of nodes

 use the tuple neighbourhood defined so as in the above slide

𝑧்(𝑘) = comb𝑘 𝑧் 𝑘 − 1 , agg𝑘 𝑧𝐻 𝑘 − 1 : 𝐻𝑛𝑒[𝑇]

readout(zT1,….,)

k-tuple of nodes T=(v1,..vk)

290

291

27

Going beyond GNNs
An example (Morris &Alt)

 ne[T] may consider

 local neighbourhood for decreasing complexity

(tuples which differ for two nodes linked by edges)

 global neighbourhood

𝑧்(𝑘) = relu 𝑧் 𝑘 − 1 𝑊1
𝑘 + 𝑧𝐻 𝑘 − 1 𝑊2

𝑘

ு[்]

k-tuple of nodes T=(v1,..vk)

Going beyond GNNs
An example (Morris &Alt)

It has been proved that

 Such a model can distinguish graphs so as k-WL

 More powerful than standard GNN

Obviously, it is not a local model

 more powerful, may be less generalizzation

𝑧்(𝑘) = relu 𝑧் 𝑘 − 1 𝑊1
𝑘 + 𝑧𝐻 𝑘 − 1 𝑊2

𝑘

ு[்]

k-tuple of nodes T=(v1,..vk)

292

293

28

Generalization in GNNs:
VCD on graphs

 shattering on graphs

 A set of graphs with their nodes (G1,v1)…. (Gk,vk)

 An assignament ((G1,v1) +1) …. ((Gk,vk), -1)

 A GNN shatters a set (G1,v1)…. (Gk,vk), if it can produce any

assignament

 VCD is maximal dimension of a set shattered by a GNN

Generalization in GNNs

 From a theoretical view point, there are few results

generalization in GNNs

 One for the old GNN model (Scarselli, Tsoi, et al)

• Based on Vapnik-Chernovenkis

• The bounds are similar to the of other networks

• Surprisingly, the length of unfolding in time does not play

any role: this may be due to converge of the GNN model

294

295

29

Generalization in GNNs

 From a theoretical view point, there are few results

generalization in GNNs

 One for modern GNNs (Garg et al.)

• Based on Rademacher complexity (not studied here)

• The bound depend on the lenth of unfolding

• Similar to that or recurrent networks

297

Bound on VCD dimension of
the orginal GNNs

Activation Bound

Graphs (GNNs and non–positional RecNNs)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Sequences (recurrent networks)

Polynomial O(p log(N))

Tanh,logsig, atan O(p4N2)

Vectors (multialyer neural networks)

Polynomial O(p log(p))

Tanh, logsig, atan O(p4)

p=number of
paramters

N=number of
graph nodes

296

297

30

298

Bound on Rademacher
complexity of some modern
GNNs

GNNs RNNs

C<1/d
O

ௗ

 O

C=1/d

O
ௗ

 O

C>1/d

O
ௗ

 O

d=brancing factor
r=state dimension
L=depth
m=sample size
γ= margin used in
the margine loss

C = a sort of
Lipschitz constant
for aggregation

Generalization in GNNs in
practice

 Depending on the application, the generalization in GNNs is

difficult to control

 Test distribution must be same as training distribution both

for node features and node connectivity

 For complex applications, a lot of data may be required

298

299

31

Bibliography

 Auer, P., Herbster, M., & Warmuth, M. K. (1996). Exponentially
many local minima for single neurons. In Advances in neural
information processing systems (pp. 316-322).

 W. Azizian,M. Lelarge. Expressive power of invariant and
equivariant graph neural networks. In Int. Conf. on Learning
Representations (ICLR), 2021

 Baldi, P., & Hornik, K. (1989). Neural networks and principal
component analysis: Learning from examples without local
minima. Neural networks, 2(1), 53-58.

 Bartlett, P. L. (1998). The sample complexity of pattern
classification with neural networks: the size of the weights is
more important than the size of the network. IEEE transactions
on Information Theory, 44(2), 525-536.

Bibliography

 Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-
term dependencies with gradient descent is difficult. IEEE
transactions on neural networks, 5(2), 157-166.

 Bianchini, M., Gori, M., & Maggini, M. (1994). On the problem of
local minima in recurrent neural networks. IEEE Transactions on
Neural Networks, 5(2), 167-177.

 Bianchini, M., & Gori, M. (1996). Optimal learning in artificial
neural networks: A review of theoretical results.
Neurocomputing, 13(2-4), 313-346.

 Bianchini, M., & Scarselli, F. (2014). On the complexity of neural
network classifiers: A comparison between shallow and deep
architectures. IEEE transactions on neural networks and
learning systems, 25(8), 1553-1565.

 Barron, A. R. (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions on
Information theory, 39(3), 930-945.

300

301

32

Bibliography
 Cybenko, G. (1989). Approximation by superpositions of a

sigmoidal function. Mathematics of control, signals and systems,
2(4), 303-314.

 D'Inverno, G. A., Bianchini, M., Sampoli, M. L., & Scarselli, F.
(2021). A unifying point of view on expressive power of
GNNs. arXiv preprint arXiv:2106.08992.

 Hammer, B. (2000). On the approximation capability of recurrent
neural networks. Neurocomputing, 31(1-4), 107-123.

 Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural
networks, 2(5), 359-366.

 Funahashi, K. I. (1989). On the approximate realization of
continuous mappings by neural networks. Neural networks, 2(3),
183-192.

 Garg, Vikas K., Stefanie Jegelka, and Tommi Jaakkola.
"Generalization and representational limits of graph neural
networks.", ICML, 2020.

Bibliography

 Gori, Marco, and Alberto Tesi. "On the problem of local minima
in backpropagation." IEEE Transactions on Pattern Analysis and
Machine Intelligence 14.1 (1992): 76-86.

 Gori, M., & Scarselli, F. (1998). Are multilayer perceptrons
adequate for pattern recognition and verification?. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
20(11), 1121-1132.

 Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning
machine: theory and applications. Neurocomputing, 70(1-3),
489-501.

 Kipf, Thomas N., and Max Welling. "Semi-supervised
classification with graph convolutional networks." ICML, (2016).

 Judd, J. S. (1990). Neural network design and the complexity of
learning. MIT press.

302

303

33

Bibliography
 Lawrence, S., Tsoi, A. C., & Giles, C. L. (1996, June).

Local minima and generalization. In Neural Networks,
1996., IEEE International Conference on (Vol. 1, pp. 371-
376). IEEE.

 Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J.
(2001). Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies.

 Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., & Grohe, M. (2019, July). Weisfeiler and
leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial
intelligence (Vol. 33, No. 01, pp. 4602-4609).

 F Scarselli, AC Tsoi, M Hagenbuchner, The Vapnik–
Chervonenkis dimension of graph and recursive neural
networks, Neural Networks 108, 248-259

Bibliography
 F Scarselli, M Gori, AC Tsoi, M Hagenbuchner, G Monfardini,

Computational capabilities of graph neural networks,IEEE
Transactions on Neural Networks 20 (1), 81-102, 90, 2008

 F Scarselli, M Gori, AC Tsoi, M Hagenbuchner, G Monfardini,
The graph neural network model, IEEE Transactions on Neural
Networks 20 (1), 61-80

 Shawe-Taylor, J. (1993). Symmetries and discriminability in
feedforward network architectures. IEEE Transactions on Neural
Networks, 4(5), 816-826.

 Yu, X. H., & Chen, G. A. (1995). On the local minima free
condition of backpropagation learning. IEEE Transactions on
Neural Networks, 6(5), 1300-1303.

304

305

34

Bibliography

 Vapnik, V. N. (1999). An overview of statistical learning theory.
IEEE transactions on neural networks, 10(5), 988-999.

 Xu, Keyulu, et al. "How powerful are graph neural networks?."
ICLR,2019

 Zhang, Chiyuan, et al. "Understanding deep learning requires
rethinking generalization." arXiv preprint arXiv:1611.03530
(2016).

 Zou, D., Cao, Y., Zhou, D., & Gu, Q. (2020). Gradient descent
optimizes over-parameterized deep ReLU networks. Machine
learning, 109(3), 467-492.

Thank you for your attention!

306

307

35

Lecture of September 20th
 The lecture will start at 9.00 am

 We will have a test

 Written

 Close answers

 About 1,5 hour time to complete

 The test is mandatory for students of Smart Computing PhD
who want to have to pass an exam to have the credits,

 but it is open to anybody

 After the test, we will discuss the responses, thus this will be
used as a course summarization

308

