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Deep neural networks 
(DNNs)

Deep neural networks 
(DNNs)

Definition ver 1.0

 Just networks with many layers

Up to beginning of 2000, researchers rarely used deep networks

 at that time, no theoretical advantage of  DNNs

 Deep networks are universal approximators:

• Obvious proof: two layers can approximates any 
function, the remaining layers can implement the 
identity function

 No clear advantage in generalization result for deep 
networks

 Experimental results (on simple application) had  not shown 
any advantage from DNNs

 DNNs suffered from long-term dependence problem!!
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Deep neural networks

Then researchers started to suspect that

 Very difficult problems may require the use of several layers: 
computer vision, language understanding,…

 New learning methods may have to be used to overcome the 
long-term dependence problem:

 Unsupervised learning for hidden layer?

 Stacked supervised learning?

 A lot of parameters ….

Intuitive evidences

 Each layer produces a more abstract representation of inputs 
simplifying difficult problems in an iterative way

 Animal brains are layered … , it is not a casuality

Current DNNs are much more 
complex than old DNNs 
Current DNNs exploits a lot of peculiarities

 Different types of layers

 Weight sharing

 Some neurons share the same weights

 Modularization

 A sub-module of the network is applied on 
different subset of the inputs

 particular activation functions

 Rectifier, drop out, max out, …  
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An example of DNNs: 
convolutional neural networks
Convolutional neural networks

 For image classification

 Originally used for handwritten digit recognition

 Currently, the best tools for object recognition sin 
images are based on evolutions of convolutional 
neural networks 

The layers of a convolutional network 

 Convolutional layers

 Pooling layers

 Fully connected layers

Convolutional neural networks: 
convolutional layer

Kernel filters in image processing

 Filter kernels are matrices, which can be applied to an image 
by convolution  

Edge Detection Blur

 By convolution with a 3x3 matrix M, the pixels of each 3x3 
window are multiplied by M

 A convolutional layer is almost equivalent to the application of 
a kernel whose parameters are trained!!

0 1 0
1 −4 1
0 1 0

1 1 1
1 1 1
1 1 1
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Convolutional neural networks: 
convolutional layer

Convolutional layers

 A neuron of a convolutional layer 
implements a kernel 

 The neuron is connected to 
a window (receptive field) of the original image 
(f.i., a 3x3(x3) square )

 The kernel matrix is defined by the weights of the 
connections

 The kernel is convoluted over the input

• There is a neuron for each window receptive field

 All the neurons share the same weight sets

Convolutional neural networks: 
convolutional layer

 A convolutional layer has the dimension
of the input image (width and height) 

 Intuitively, convolutional layers extract
low level features from the input image
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Convolutional neural networks: 
pooling layer

Pooling layers

 Each neuron of a pooling layer summarize the result of a  
small window of the image 
(f.i., a 2x2 receptive fields in the previous layer)

 Summarization can be by taking maximum, a random value, 
…

 Pooling layers decrease the size of the features (decrease 
width and height)

 Intuitively, pooling layers are used to simplify the problem by 
reducing the features to be considered

Convolutional neural networks: 
fully connected layer

Fully connected layers

 Common layers in which each neurons connected to all the 
neurons of the previous layer

 Intuitively, fully connected layers allow to combine and reason 
about the extracted features in order to take the final decision
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Convolutional neural 
networks

The architecture

 A convolution layer followed by a pooling layer

 One or several fully connected layer

 The pair (convolutional, pooling) may be repeated several 
times

 Several convolutional layers can be used in parallel

A lot of different architectures are now available

 1998, LeNet 6 layers, 68K parameters

 2012, Alexnet 8 layers, 60M parameters

 2014, Inception, 22 layers, 2M parameters

 2014, VCGG net, 16 layers, 138M parameters

 2015, ResNet 152 layer, 60M parameters

Same image datasets

 Imagenet 14M images, 1000 categories

 CIFAR 100, 60K images, 100 categories

 MNIST 60K handwritten characters

 ….

Current convolutional architettures are over-parametrized!!!

 More parameters than images

 What are the consequences of this?

Current DNNs
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Current convolutional architettures are over-parametrized!!!

 Learning is simple, not much affected by local minima 

 this is expected

 Generalization may be also good

 this is achieved also applying a number of tricks

• Pooling

• Weight decay

• Use validation to stop

• Dataset aumentantion

• Images can be rotated, scaled, ….

Current DNNs

Approximation capability ver 1.0

 DNNs are universal approximators
(with mild constraints on architecture)

 An example of the proof, 

 Given a target function t, 

 the first three layers of the DNN approximate t

 remaining layers just copy the ouptut of the third
layer

Approximation capability of 
DNNs
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Approximation capability ver 2.0: the idea 
“(using the same of amount of resources), 
deep architectures can implement more complex 
functions than shallow networks”

A new tool was required to evaluate the complexity of 
the implemented classifiers

 The following complexity measures were not useful

 Number of neurons

 VC-dimension 

 Approximation capability 

The role of depth in DNNs
Bianchini,
Scarselli

 N: a neural network

 f: the function implemented by the network

 SN: the set of the non-negative domain, i.e. 

SN={x| fN(x)≥0} 

The idea 

 To measure the topological complexity of  the set SN

 It is reasonable when N is used for classification purposes

The underlining idea
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 Black regions represent the non-negative patterns, i.e,, SN

 Can you say which set is more complex in each couple? 

Topological complexity: 
an intuitive viewpoint

VS VS

VS VS

Betti numbers

 used to distinguish spaces with different topological properties 

 for any subset S ⊂ Rn, there exist n Betti numbers, 

b0(S), b1(S), ….. bn-1(S)

Formally

 bk(S): is rank of the k–th homology group of the space S.

Intuitively

 b0(S): is the number of connected components of the set S

 bk(S): counts the number of (k+1)–dimensional holes in S

Betti numbers: a topological 
concept
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 In topology, the sum of the Betti numbers 

B(S)=k bk(S),

is used to evaluate the complexity of the set S

 We will measure the complexity of  the function 
fN implemented by a neural network N by 

B(SN)=k bk(SN),

where of SN={x| fN(x)≥0}.

The proposed measure of 
complexity

Betti numbers: examples

VS VS

VS VS

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=2 b1(S)=1
B(S)=3

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=2
B(S)=3

b0(S)=1 b1(S)=1 
b2(S)=1

B(S)=3

b0(S)=1 b1(S)=2
b0(S)=1

B(S)=4
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The considered networks

 feedforwad layered perceptrons

 with sigmoidal (ridge) activation functions in the 
hidden layers and linear in the output layer

Upper and lower bounds on B(SN) varying

 The number of hidden layers l

 The number of hidden units h

 The number of inputs n

 The activation functions: tanh, arctan, polynmial of 
degree r, generic sigmoids

The study

(k wk xk)

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ( (h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers 
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial
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W.r.t. the number of inputs n, the complexity 

 always grows exponentially

Analysis of the results

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ( (h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers 
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial
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w.r.t. the number of hidden neurons h, the complexity 

 grows polynomially, for shallow networks

 grows exponentially, for deep networks

Analysis of the results

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ( (h-1) /n)n n h
many sigmoid 2l-1 l,h
many polynomial 2l-1 l,h

 l: number of hidden layers 
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial
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Summing up

 with the same amount of resources, deep networks can 
realize more complex classifiers than shallow networks!!

Remarks

 This does mean that all the functions can be better
approximated by deep networks!!

 Only some functions with particular symmetries will have
benefict from being approximated by deep networks

Analysis of the results

Notice that

 A layered network implements a function 

fN=g1◦g2 .. ◦ gl ◦ t

 gk is the function implemented by layer k

 ◦ is the function composition operator

 If fN=g1◦ t, then fN behaves as t on all the regions A1,.. ,As

where g1(Ak)= Rn 

 With several layers, the number of regions Ak such that  
gl(…g1(Ak))= Rn can grow exponentially

Deep networks can replicate more easily the same behavior 
on different regions of the input domain

An intuitive explanation of the 
advantage of deep architectures
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An example of the advantages 
of deep networks

𝑔(𝑥) = 1 − 𝑥 2

𝑡 𝑥 = 1 − 𝑥ଵ
ଶ, 1 − 𝑥ଶ

ଶ

t g◦t

g◦g◦g◦tg◦g◦t

An experiment Zang, et al.

 with CIFAR 10 dataset (60K images, 10 classes)

 Using Inception (1.6M par)

 What does it happen without the usual "tricks"?  (weight decay, …)

 The networks easily reaches 100% on train set,

 but of course, the generalization may be lower
(surprising, it still generalize)

 What does it happen if the labels are replaced by random labels? 
And what if also the image pixels are shuffled, randomly
permuted…

 The networks easily still reaches 100% on train set,

 but of course, now the performance on test set is that of a 
random classifier

Let us have a look at

https://arxiv.org/abs/1611.03530

Learning in DNNs with a lot of 
parameters
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It has been proved that Zou et Alt.

 Deep networks with Gaussian random initialization on L layers

 n patterns are separated at elast by α

 when the number of hidden nodes per layer is at least 
Ω(n14L16/α4)

 Then gradient descent can achieve zero training error within 
O(n5L3/α) iterations, 

 No local minima, a defined number of iterations

Over-parametrized networks

Intuitive explanations (attempt)

 Deep networks contains modules which solve sub-problems: 
those modules may not be over-parametrized

 Gradient descent produce an implicit smooting, since it uses 
patterns to iteratively defines a solution: in this way, the weight 
solution is close to the starting point and it small as suggested 
by patterns

 Convolutional networks have a limited approximation 
capability, due to the presence of convolutions that capture 
images simmetries

 Researchers are currently try to better understand the actual 
role played by over-parametrization

Over-parametrized networks
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Recurrent neural networks

Recurrent neural networks 
(RNNs)
Dynamical  neural networks

 An internal state z(t)  Rs

 A sequence of inputs x(t)  Rn

 A sequence of outputs x(t)  Rm

 A transition network 𝑓𝑤

 𝑧 𝑡 + 1 = 𝑓𝑤(𝑧 𝑡 , 𝑥 𝑡 )

 An output network 𝑔𝑤

 𝑜 𝑡 = 𝑔𝑤(𝑧 𝑡 )

fw gw
z(t)

x(t)

z(t)

o(t)

Feedforward
networks

210

211



18

Training recurrent neural
networks
The train set

 A pattern is a pair of sequences of inputs and desired
outputs

 𝐿 = {(�̅�, 𝑡̅)|�̅� = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , 𝑡̅ = 𝑡 1 , . . 𝑡(𝑇)}

Training recurrent neural
networks
Unfolding network

 A copy of fw, gw for each time instance, connected in sequence

The unfolding network is a feedforward network 
(with shared weights)

 The unfolding network can be trained by standard 
backpropagation
(just remember to accumulate gradients)

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(2)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)
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Approximation capability of 
RNNs

RNN approximation ver 1.0

 given dynamical system, can it be approximately 
simulated by a RNN?

Formally, is there a RNN that simulates the following?

 a transition function 𝑓̅

 an output function �̅�

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Approximation capability of 
RNNs
Obvious answer

 Yes
Just take  neural networks that approximate 𝑓̅

and �̅�

fw gw
z(t)

x(t)

z(t)

o(t)

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Target dynamic system
RNN
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Simulating a dynamical
system
Obvious answer

 Yes
Just take  neural networks that approximate 𝑓̅

and �̅�

But notice

 We implicitly assumed the state dimension is
known and you can design your network with 
the same internal state dimension

 The transition and output networks must have 
at least  one hidden layer

 The sequences of outputs generated by the 
two dynamical system may diverges with time 

Approximation capability

An advanced question

 Let us consider a sequences of patterns 𝑥(𝑇) =
𝑥 0 , 𝑥 1 , … 𝑥 𝑇  and  focus the attention on a function t that 
returns an output t(𝑥(𝑇)) = 𝑜(𝑇)

 Can a RNN approximate t?

 Notice: no assumption is made on the existence of a dynamical 
system able to implement t …. we are studying that 

An intuitive answer

 Yes, provided that  

1. The transition network can code the input sequences (or 
all the relevant information) and store into the state z(t)

2. The output network can decode such a representation and 
produce the output 

 If the coding exists, the thesis is true by universal 
approximation
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Approximating sequences
 Yes, provided that  

1. The transition network can code the input sequences (or all 
the relevant information) and store into the state z(t)

Simple case: the dimension of the state must be large enough

 It must hold s > T*n

 just copy inputs to the state

The general case, s<T*n

 a set of integers v1, ..,vk can be coded with the real number 
0.v1, ..vk

 E.g. 0,1234 is a coding of 1, 2, 3, 4

 a set of real number v1, ..,vk can be approximately coded with 
the real number 0.[v1] ..[vk], where [.] is the rounding

 E.g. 0,1234 is a coding of 1.12,  2.15, 3.41,  4.32

Approximating sequences
It has been proved that (Hammer)

 Let us consider a function t that takes in input sequences of 
patterns 𝑥(𝑇) = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 and returns an output 
t(𝑥(𝑇)) = 𝑜(𝑇)

 t can be approximated by a RNN which is feeded with x(i) 
and return o(i) for each i

 If t is measurable and 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are reals, then 
the approximation can be obtained in probability

 If t is continuous and 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are integers, 
then the approximation is w.r.t. sup norm
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RNN approximation in 
practice
 when s<<T*n, the coding function exists, but 

 it is complex 

 It is very sensible to noise

 .. so it is difficult to learn  

 In real life tasks

 only a small part of the information in inputs is useful

 Inputs are recursively processed

 Inputs belong to a sub.mainfold

 … information to be stored is much smaller and a much 
smaller state dimension is required 

Learning capability of RNNs

Intuitively

 Known results recall that of feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 the matrix of the inputs x1(0),  …, x1(T), x2(1)… x2(T), 
… is full-rank

 Thus, the total number of time instances cannot larger 
than input dimension
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Learning capability of RNNs

Intuitively

 Known results recall that feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 The sequences are linearly separable

 The weights of links connecting states to states are 
positive

Long-term dependencies

Intuitively

 It is difficult to learn a RNN when the at time T depends 
on the input at time t and t<<T

Common explanation

 The gradient become smaller and smaller when 
propagated through the layers of the unfolding network

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)
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Common explanation

Remember 

 𝑒𝑤 𝑇 = 𝑙 − 𝑜𝑤(𝑇) ଶ


డ௘௪(்)

డ௫(଴)
=

డ௘௪(்)

డ௭(்)

డ௭(்)

డ௓(்ିଵ)

డ௭(்ିଵ)

డ௭(்ିଶ)
… …

డ௭ ଵ

డ௫ ଴

The term 
డ௭(௧ାଵ)

డ௭(௧)

 A sxs matrix  measuring how the input state of fw affects its output

 When 
డ௭(௧ାଵ)

డ௭(௧)
<1 and T is large 

డ௘௪(்)

డ௫(଴)
is close to 0

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Common explanation

డ௭(௧ାଵ)

డ௓(௧)
is small where the function fw is flat 

 small weights 

 saturated neurons

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)
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Long-term dependencies: 
some experiments
Bengio, Frasconi, et alt.

 The problem: learning to latch

 An input sequence x(0)…x(T)

 Two classes to be reconignized which depend only on 
x(0)

 The expected output at time T o(T)>0 for class A, o(t)<= 
fo class B

 The network

 A RNN with a single hidden neuron

 =tanh

 z(t)=w (z(t-1))+x(t)


x(t) z(t)

Long-term dependencies: 
some experiments

Bengio, Frasconi, et alt.

 The classification task is learned only for small T (T<20)

 Some tricks with learning algorithms improved only a few the 
results
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Long-term dependencies: 
the theory

Bengio, Frasconi, et alt.

 .If w>1 then the system has two attracting stable states, a 
positive  z+, and a negative stable state z-

 Intuitively: the system is able to store some information 
only if w>1

 This is true in general, if the weights are too small then 
the RNN has only one stable point!!|!

 In this case, If  z(0)>0, z(0) is large enough and |x(t)| not too 
large then z(T)>0 (the converse hold if z(0)<0)

 Intuitively: the system resets the stored information when 
the input is large or small enough

 The information storing is robust for small inputs


x(t) z(t)

Long-term dependencies: 
the theory

Bengio, Frasconi, et alt.

 A more general network with any number of neurons

 z(t)=fw(z(t-1))+x(t)

 The system may have several attracting points

 There are regions close to those points where 
డ௭(௧ାଵ)

డ௭(௧)
<1

 Those regions 

 make information latching robust

 But if inputs do not move the state from an attracting 

regions, then lim
்→ஶ

డ௘(்)

డ௫(଴)
= 0

fw
x(t) z(t)

Actracting
regions

 

Stable states
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Long-term dependencies: 
other explanations
Loading problem is difficult with many inputs

 The learning algorithm is a search algorithm in network 
space: with many inputs, the search space is large

 which are the inputs affecting the output?

Antagonist goals

 weights must be large to  have several attracting regions:

 but large weights decrease generalization capability 
and/or saturate sigmoids and/or make gradient oscillate

 There must exist regions where 
డ௭(௧ାଵ)

డ௭(௧)
<1 holds to store 

information in a robust way

 But 
డ௭(௧ାଵ)

డ௭(௧)
<1 makes make gradient small 

 Small regions are difficult to reach

Long short-term memory: 
a solution

The idea

 keep 
డ௭(௧ାଵ)

డ௭(௧)
equal to 1

 this makes the error signal 
to remain close 1 through 
several time steps

LSTM cell

 a neuron to store the state

 an input neurons

 a store neuron and a gate  to decide whether to store input

 a forget neuron and a gate  to decide whether to reset the 
state 

 An output neuron and gate  to decide whether to output 
the state
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Long short-term memory

LSTM cell

 neurons use sum and sigmoidal activation

 gates use just product

State 
neuron

Input 
neuron

forget
neuron

output
neuronstore

neuron

input output

gates

Long short-term memory

The state

 f(t) is 0 to forget, it is 1 to remember

 i(t) is 1 to store input, it is 0 to skip

z(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

State 
neuron

input output

z(t)

in(t)

f(t)

i(t)

Gates denote
products
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Long short-term memory

Store, forget and output neurons

 They are standard neurons with sigmoidal activation
function and weights, e.g.

f(𝑡) = 𝜎 𝑤𝑧𝑧 𝑡 + 𝑤𝑥𝑥(𝑡)

input output

z(t)
x(t)

Long short-term memory

LSTM networks

 constructed connecting LSTM cell

 They can be mixed with standard neurons

 common architecture: a standard input layer, a hidden 
layer of LSTM cells, a standard output layer

LSTM 

LSTM 

LSTM 
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Long short-term memory

LSTM 

 can store input for hundreds/thousands of 
instances

 Successfully applied in several application 
domains, e.g. language translation

Long short-term memory: 
why do they work?

Explanation ver 1.0

 When the forget gate is 1, then we have 
డ௭(௧ାଵ)

డ௭(௧)
=1  

𝑧(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

Another Explanation 

 LSTM assumes that 

 the problem can be solved by storing/forgetting 
inputs/states

 The decision whether to store/forget is simple
(linearly separable, implementable by a single 
layer net)

 RNN does not make any assumption

 LSTM are better than RNN if the assumption is 
satisfied

 The search space is reduced!
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Generalization capability of 
RNNs
Intuitively

 VCD of RNNs can be studied  by  observing the unfolding 
network 

 However, such an assumption does not consider the 
implications of the weight sharing 

 Current results may suffer of this limitation

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Generalization capability of 
RNNs
Neural networks with p parameters, T time steps, bounds for 
the order of growth of VCD(fw)

 RNNs with piecewise polynomial activation function 

Upper bound: O(Tp2),

Lower bound o(p2)

 RNNs with, tanh, logsig, atan activation function 

Upper bound: O(T2p4) 

Lower bound o(p4) 
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