
1

Deep neural networks
(DNNs)

Deep neural networks
(DNNs)

Definition ver 1.0

 Just networks with many layers

Up to beginning of 2000, researchers rarely used deep networks

 at that time, no theoretical advantage of DNNs

 Deep networks are universal approximators:

• Obvious proof: two layers can approximates any
function, the remaining layers can implement the
identity function

 No clear advantage in generalization result for deep
networks

 Experimental results (on simple application) had not shown
any advantage from DNNs

 DNNs suffered from long-term dependence problem!!

178

179

2

Deep neural networks

Then researchers started to suspect that

 Very difficult problems may require the use of several layers:
computer vision, language understanding,…

 New learning methods may have to be used to overcome the
long-term dependence problem:

 Unsupervised learning for hidden layer?

 Stacked supervised learning?

 A lot of parameters ….

Intuitive evidences

 Each layer produces a more abstract representation of inputs
simplifying difficult problems in an iterative way

 Animal brains are layered … , it is not a casuality

Current DNNs are much more
complex than old DNNs
Current DNNs exploits a lot of peculiarities

 Different types of layers

 Weight sharing

 Some neurons share the same weights

 Modularization

 A sub-module of the network is applied on
different subset of the inputs

 particular activation functions

 Rectifier, drop out, max out, …

180

181

3

An example of DNNs:
convolutional neural networks
Convolutional neural networks

 For image classification

 Originally used for handwritten digit recognition

 Currently, the best tools for object recognition sin
images are based on evolutions of convolutional
neural networks

The layers of a convolutional network

 Convolutional layers

 Pooling layers

 Fully connected layers

Convolutional neural networks:
convolutional layer

Kernel filters in image processing

 Filter kernels are matrices, which can be applied to an image
by convolution

Edge Detection Blur

 By convolution with a 3x3 matrix M, the pixels of each 3x3
window are multiplied by M

 A convolutional layer is almost equivalent to the application of
a kernel whose parameters are trained!!

0 1 0
1 −4 1
0 1 0

1 1 1
1 1 1
1 1 1

182

183

4

Convolutional neural networks:
convolutional layer

Convolutional layers

 A neuron of a convolutional layer
implements a kernel

 The neuron is connected to
a window (receptive field) of the original image
(f.i., a 3x3(x3) square)

 The kernel matrix is defined by the weights of the
connections

 The kernel is convoluted over the input

• There is a neuron for each window receptive field

 All the neurons share the same weight sets

Convolutional neural networks:
convolutional layer

 A convolutional layer has the dimension
of the input image (width and height)

 Intuitively, convolutional layers extract
low level features from the input image

184

185

5

Convolutional neural networks:
pooling layer

Pooling layers

 Each neuron of a pooling layer summarize the result of a
small window of the image
(f.i., a 2x2 receptive fields in the previous layer)

 Summarization can be by taking maximum, a random value,
…

 Pooling layers decrease the size of the features (decrease
width and height)

 Intuitively, pooling layers are used to simplify the problem by
reducing the features to be considered

Convolutional neural networks:
fully connected layer

Fully connected layers

 Common layers in which each neurons connected to all the
neurons of the previous layer

 Intuitively, fully connected layers allow to combine and reason
about the extracted features in order to take the final decision

186

187

6

Convolutional neural
networks

The architecture

 A convolution layer followed by a pooling layer

 One or several fully connected layer

 The pair (convolutional, pooling) may be repeated several
times

 Several convolutional layers can be used in parallel

A lot of different architectures are now available

 1998, LeNet 6 layers, 68K parameters

 2012, Alexnet 8 layers, 60M parameters

 2014, Inception, 22 layers, 2M parameters

 2014, VCGG net, 16 layers, 138M parameters

 2015, ResNet 152 layer, 60M parameters

Same image datasets

 Imagenet 14M images, 1000 categories

 CIFAR 100, 60K images, 100 categories

 MNIST 60K handwritten characters

 ….

Current convolutional architettures are over-parametrized!!!

 More parameters than images

 What are the consequences of this?

Current DNNs

188

189

7

Current convolutional architettures are over-parametrized!!!

 Learning is simple, not much affected by local minima

 this is expected

 Generalization may be also good

 this is achieved also applying a number of tricks

• Pooling

• Weight decay

• Use validation to stop

• Dataset aumentantion

• Images can be rotated, scaled, ….

Current DNNs

Approximation capability ver 1.0

 DNNs are universal approximators
(with mild constraints on architecture)

 An example of the proof,

 Given a target function t,

 the first three layers of the DNN approximate t

 remaining layers just copy the ouptut of the third
layer

Approximation capability of
DNNs

190

191

8

Approximation capability ver 2.0: the idea
“(using the same of amount of resources),
deep architectures can implement more complex
functions than shallow networks”

A new tool was required to evaluate the complexity of
the implemented classifiers

 The following complexity measures were not useful

 Number of neurons

 VC-dimension

 Approximation capability

The role of depth in DNNs
Bianchini,
Scarselli

 N: a neural network

 f: the function implemented by the network

 SN: the set of the non-negative domain, i.e.

SN={x| fN(x)≥0}

The idea

 To measure the topological complexity of the set SN

 It is reasonable when N is used for classification purposes

The underlining idea

192

193

9

 Black regions represent the non-negative patterns, i.e,, SN

 Can you say which set is more complex in each couple?

Topological complexity:
an intuitive viewpoint

VS VS

VS VS

Betti numbers

 used to distinguish spaces with different topological properties

 for any subset S ⊂ Rn, there exist n Betti numbers,

b0(S), b1(S), ….. bn-1(S)

Formally

 bk(S): is rank of the k–th homology group of the space S.

Intuitively

 b0(S): is the number of connected components of the set S

 bk(S): counts the number of (k+1)–dimensional holes in S

Betti numbers: a topological
concept

194

195

10

 In topology, the sum of the Betti numbers

B(S)=k bk(S),

is used to evaluate the complexity of the set S

 We will measure the complexity of the function
fN implemented by a neural network N by

B(SN)=k bk(SN),

where of SN={x| fN(x)≥0}.

The proposed measure of
complexity

Betti numbers: examples

VS VS

VS VS

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=2 b1(S)=1
B(S)=3

b0(S)=1 b1(S)=0
B(S)=1

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=1
B(S)=2

b0(S)=1 b1(S)=2
B(S)=3

b0(S)=1 b1(S)=1
b2(S)=1

B(S)=3

b0(S)=1 b1(S)=2
b0(S)=1

B(S)=4

196

197

11

The considered networks

 feedforwad layered perceptrons

 with sigmoidal (ridge) activation functions in the
hidden layers and linear in the output layer

Upper and lower bounds on B(SN) varying

 The number of hidden layers l

 The number of hidden units h

 The number of inputs n

 The activation functions: tanh, arctan, polynmial of
degree r, generic sigmoids

The study

(k wk xk)

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ((h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

198

199

12

W.r.t. the number of inputs n, the complexity

 always grows exponentially

Analysis of the results

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ((h-1) /n)n n h
many sigmoid 2l-1 l, h
many polynomial 2l-1 l, h

 l: number of hidden layers
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

200

201

13

w.r.t. the number of hidden neurons h, the complexity

 grows polynomially, for shallow networks

 grows exponentially, for deep networks

Analysis of the results

The results

Layers Activation Bound on B(SN) Exponential Polynomial

Upper bounds
1 threshold hn n h
1 polynomial (2 + r)(1 + r)n-1 n r
1 arctan (n + h)n+2 n h
many arctan 2h(2h-1)  (nl + n)n+2h n,h,l
many tanh 2h(h-1)/2  (nl + n)n+h n,h,l
many polynomial (2 + rl)(1 + r l)n-1 n, l, h r

Lower bounds
1 sigmoid ((h-1) /n)n n h
many sigmoid 2l-1 l,h
many polynomial 2l-1 l,h

 l: number of hidden layers
 h: number of hidden units
 n: number of inputs
 r: degree of the polynomial

202

203

14

Summing up

 with the same amount of resources, deep networks can
realize more complex classifiers than shallow networks!!

Remarks

 This does mean that all the functions can be better
approximated by deep networks!!

 Only some functions with particular symmetries will have
benefict from being approximated by deep networks

Analysis of the results

Notice that

 A layered network implements a function

fN=g1◦g2 .. ◦ gl ◦ t

 gk is the function implemented by layer k

 ◦ is the function composition operator

 If fN=g1◦ t, then fN behaves as t on all the regions A1,.. ,As

where g1(Ak)= Rn

 With several layers, the number of regions Ak such that
gl(…g1(Ak))= Rn can grow exponentially

Deep networks can replicate more easily the same behavior
on different regions of the input domain

An intuitive explanation of the
advantage of deep architectures

204

205

15

An example of the advantages
of deep networks

𝑔(𝑥) = 1 − 𝑥 2

𝑡 𝑥 = 1 − 𝑥ଵ
ଶ, 1 − 𝑥ଶ

ଶ

t g◦t

g◦g◦g◦tg◦g◦t

An experiment Zang, et al.

 with CIFAR 10 dataset (60K images, 10 classes)

 Using Inception (1.6M par)

 What does it happen without the usual "tricks"? (weight decay, …)

 The networks easily reaches 100% on train set,

 but of course, the generalization may be lower
(surprising, it still generalize)

 What does it happen if the labels are replaced by random labels?
And what if also the image pixels are shuffled, randomly
permuted…

 The networks easily still reaches 100% on train set,

 but of course, now the performance on test set is that of a
random classifier

Let us have a look at

https://arxiv.org/abs/1611.03530

Learning in DNNs with a lot of
parameters

206

207

16

It has been proved that Zou et Alt.

 Deep networks with Gaussian random initialization on L layers

 n patterns are separated at elast by α

 when the number of hidden nodes per layer is at least
Ω(n14L16/α4)

 Then gradient descent can achieve zero training error within
O(n5L3/α) iterations,

 No local minima, a defined number of iterations

Over-parametrized networks

Intuitive explanations (attempt)

 Deep networks contains modules which solve sub-problems:
those modules may not be over-parametrized

 Gradient descent produce an implicit smooting, since it uses
patterns to iteratively defines a solution: in this way, the weight
solution is close to the starting point and it small as suggested
by patterns

 Convolutional networks have a limited approximation
capability, due to the presence of convolutions that capture
images simmetries

 Researchers are currently try to better understand the actual
role played by over-parametrization

Over-parametrized networks

208

209

17

Recurrent neural networks

Recurrent neural networks
(RNNs)
Dynamical neural networks

 An internal state z(t)  Rs

 A sequence of inputs x(t)  Rn

 A sequence of outputs x(t)  Rm

 A transition network 𝑓𝑤

 𝑧 𝑡 + 1 = 𝑓𝑤(𝑧 𝑡 , 𝑥 𝑡)

 An output network 𝑔𝑤

 𝑜 𝑡 = 𝑔𝑤(𝑧 𝑡)

fw gw
z(t)

x(t)

z(t)

o(t)

Feedforward
networks

210

211

18

Training recurrent neural
networks
The train set

 A pattern is a pair of sequences of inputs and desired
outputs

 𝐿 = {(�̅�, 𝑡̅)|�̅� = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , 𝑡̅ = 𝑡 1 , . . 𝑡(𝑇)}

Training recurrent neural
networks
Unfolding network

 A copy of fw, gw for each time instance, connected in sequence

The unfolding network is a feedforward network
(with shared weights)

 The unfolding network can be trained by standard
backpropagation
(just remember to accumulate gradients)

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(2)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

212

213

19

Approximation capability of
RNNs

RNN approximation ver 1.0

 given dynamical system, can it be approximately
simulated by a RNN?

Formally, is there a RNN that simulates the following?

 a transition function 𝑓̅

 an output function �̅�

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Approximation capability of
RNNs
Obvious answer

 Yes
Just take neural networks that approximate 𝑓̅

and �̅�

fw gw
z(t)

x(t)

z(t)

o(t)

𝑓̅ �̅�z(t)x(t)

z(t)

o(t)

Target dynamic system
RNN

214

215

20

Simulating a dynamical
system
Obvious answer

 Yes
Just take neural networks that approximate 𝑓̅

and �̅�

But notice

 We implicitly assumed the state dimension is
known and you can design your network with
the same internal state dimension

 The transition and output networks must have
at least one hidden layer

 The sequences of outputs generated by the
two dynamical system may diverges with time

Approximation capability

An advanced question

 Let us consider a sequences of patterns 𝑥(𝑇) =
𝑥 0 , 𝑥 1 , … 𝑥 𝑇 and focus the attention on a function t that
returns an output t(𝑥(𝑇)) = 𝑜(𝑇)

 Can a RNN approximate t?

 Notice: no assumption is made on the existence of a dynamical
system able to implement t …. we are studying that

An intuitive answer

 Yes, provided that

1. The transition network can code the input sequences (or
all the relevant information) and store into the state z(t)

2. The output network can decode such a representation and
produce the output

 If the coding exists, the thesis is true by universal
approximation

216

217

21

Approximating sequences
 Yes, provided that

1. The transition network can code the input sequences (or all
the relevant information) and store into the state z(t)

Simple case: the dimension of the state must be large enough

 It must hold s > T*n

 just copy inputs to the state

The general case, s<T*n

 a set of integers v1, ..,vk can be coded with the real number
0.v1, ..vk

 E.g. 0,1234 is a coding of 1, 2, 3, 4

 a set of real number v1, ..,vk can be approximately coded with
the real number 0.[v1] ..[vk], where [.] is the rounding

 E.g. 0,1234 is a coding of 1.12, 2.15, 3.41, 4.32

Approximating sequences
It has been proved that (Hammer)

 Let us consider a function t that takes in input sequences of
patterns 𝑥(𝑇) = 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 and returns an output
t(𝑥(𝑇)) = 𝑜(𝑇)

 t can be approximated by a RNN which is feeded with x(i)
and return o(i) for each i

 If t is measurable and 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are reals, then
the approximation can be obtained in probability

 If t is continuous and 𝑥 0 , 𝑥 1 , … 𝑥 𝑇 , are integers,
then the approximation is w.r.t. sup norm

218

219

22

RNN approximation in
practice
 when s<<T*n, the coding function exists, but

 it is complex

 It is very sensible to noise

 .. so it is difficult to learn

 In real life tasks

 only a small part of the information in inputs is useful

 Inputs are recursively processed

 Inputs belong to a sub.mainfold

 … information to be stored is much smaller and a much
smaller state dimension is required

Learning capability of RNNs

Intuitively

 Known results recall that of feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 the matrix of the inputs x1(0), …, x1(T), x2(1)… x2(T),
… is full-rank

 Thus, the total number of time instances cannot larger
than input dimension

220

221

23

Learning capability of RNNs

Intuitively

 Known results recall that feedforward networks

It has been proved that (Bianchini et alt)

 a RNN with one layer network

 error has no local minima, if

 The sequences are linearly separable

 The weights of links connecting states to states are
positive

Long-term dependencies

Intuitively

 It is difficult to learn a RNN when the at time T depends
on the input at time t and t<<T

Common explanation

 The gradient become smaller and smaller when
propagated through the layers of the unfolding network

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

z(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

222

223

24

Common explanation

Remember

 𝑒𝑤 𝑇 = 𝑙 − 𝑜𝑤(𝑇) ଶ


డ௘௪(்)

డ௫(଴)
=

డ௘௪(்)

డ௭(்)

డ௭(்)

డ௓(்ିଵ)

డ௭(்ିଵ)

డ௭(்ିଶ)
… …

డ௭ ଵ

డ௫ ଴

The term
డ௭(௧ାଵ)

డ௭(௧)

 A sxs matrix measuring how the input state of fw affects its output

 When
డ௭(௧ାଵ)

డ௭(௧)
<1 and T is large

డ௘௪(்)

డ௫(଴)
is close to 0

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Common explanation

డ௭(௧ାଵ)

డ௓(௧)
is small where the function fw is flat

 small weights

 saturated neurons

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

224

225

25

Long-term dependencies:
some experiments
Bengio, Frasconi, et alt.

 The problem: learning to latch

 An input sequence x(0)…x(T)

 Two classes to be reconignized which depend only on
x(0)

 The expected output at time T o(T)>0 for class A, o(t)<=
fo class B

 The network

 A RNN with a single hidden neuron

 =tanh

 z(t)=w (z(t-1))+x(t)


x(t) z(t)

Long-term dependencies:
some experiments

Bengio, Frasconi, et alt.

 The classification task is learned only for small T (T<20)

 Some tricks with learning algorithms improved only a few the
results

226

227

26

Long-term dependencies:
the theory

Bengio, Frasconi, et alt.

 .If w>1 then the system has two attracting stable states, a
positive z+, and a negative stable state z-

 Intuitively: the system is able to store some information
only if w>1

 This is true in general, if the weights are too small then
the RNN has only one stable point!!|!

 In this case, If z(0)>0, z(0) is large enough and |x(t)| not too
large then z(T)>0 (the converse hold if z(0)<0)

 Intuitively: the system resets the stored information when
the input is large or small enough

 The information storing is robust for small inputs


x(t) z(t)

Long-term dependencies:
the theory

Bengio, Frasconi, et alt.

 A more general network with any number of neurons

 z(t)=fw(z(t-1))+x(t)

 The system may have several attracting points

 There are regions close to those points where
డ௭(௧ାଵ)

డ௭(௧)
<1

 Those regions

 make information latching robust

 But if inputs do not move the state from an attracting

regions, then lim
்→ஶ

డ௘(்)

డ௫(଴)
= 0

fw
x(t) z(t)

Actracting
regions

 

Stable states

228

229

27

Long-term dependencies:
other explanations
Loading problem is difficult with many inputs

 The learning algorithm is a search algorithm in network
space: with many inputs, the search space is large

 which are the inputs affecting the output?

Antagonist goals

 weights must be large to have several attracting regions:

 but large weights decrease generalization capability
and/or saturate sigmoids and/or make gradient oscillate

 There must exist regions where
డ௭(௧ାଵ)

డ௭(௧)
<1 holds to store

information in a robust way

 But
డ௭(௧ାଵ)

డ௭(௧)
<1 makes make gradient small

 Small regions are difficult to reach

Long short-term memory:
a solution

The idea

 keep
డ௭(௧ାଵ)

డ௭(௧)
equal to 1

 this makes the error signal
to remain close 1 through
several time steps

LSTM cell

 a neuron to store the state

 an input neurons

 a store neuron and a gate to decide whether to store input

 a forget neuron and a gate to decide whether to reset the
state

 An output neuron and gate to decide whether to output
the state

230

231

28

Long short-term memory

LSTM cell

 neurons use sum and sigmoidal activation

 gates use just product

State
neuron

Input
neuron

forget
neuron

output
neuronstore

neuron

input output

gates

Long short-term memory

The state

 f(t) is 0 to forget, it is 1 to remember

 i(t) is 1 to store input, it is 0 to skip

z(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

State
neuron

input output

z(t)

in(t)

f(t)

i(t)

Gates denote
products

232

233

29

Long short-term memory

Store, forget and output neurons

 They are standard neurons with sigmoidal activation
function and weights, e.g.

f(𝑡) = 𝜎 𝑤𝑧𝑧 𝑡 + 𝑤𝑥𝑥(𝑡)

input output

z(t)
x(t)

Long short-term memory

LSTM networks

 constructed connecting LSTM cell

 They can be mixed with standard neurons

 common architecture: a standard input layer, a hidden
layer of LSTM cells, a standard output layer

LSTM

LSTM

LSTM

234

235

30

Long short-term memory

LSTM

 can store input for hundreds/thousands of
instances

 Successfully applied in several application
domains, e.g. language translation

Long short-term memory:
why do they work?

Explanation ver 1.0

 When the forget gate is 1, then we have
డ௭(௧ାଵ)

డ௭(௧)
=1

𝑧(𝑡 + 1) = 𝑓 𝑡 𝑧(𝑡)+i(t) in(t)

Another Explanation

 LSTM assumes that

 the problem can be solved by storing/forgetting
inputs/states

 The decision whether to store/forget is simple
(linearly separable, implementable by a single
layer net)

 RNN does not make any assumption

 LSTM are better than RNN if the assumption is
satisfied

 The search space is reduced!

236

237

31

Generalization capability of
RNNs
Intuitively

 VCD of RNNs can be studied by observing the unfolding
network

 However, such an assumption does not consider the
implications of the weight sharing

 Current results may suffer of this limitation

fw

gw

z(1)

x(0)

o(1)

fw

gw

z(2)

o(1)

fw

gw

x(T)

x(T-1)

o(T)

x(1)

z(0) z(T-1)

Generalization capability of
RNNs
Neural networks with p parameters, T time steps, bounds for
the order of growth of VCD(fw)

 RNNs with piecewise polynomial activation function

Upper bound: O(Tp2),

Lower bound o(p2)

 RNNs with, tanh, logsig, atan activation function

Upper bound: O(T2p4)

Lower bound o(p4)

238

239

