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Generalization capability

Pratical question: 
generalization capability
After training, how does the FNN will perform  on 
new patterns from a test set?

Generalization

 Iet us measure this with the performance of a 
model f on a test set T

f= (L) is produced by a learning algorithm 
using a train set L
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Pratical question: 
generalization capability

Interesting questions 

 what is the predicted  performance of f on test set T?

 This question is related to

 which model should we choose?

 which learning algorithm should we choose?

 When learning should be stop?

Answer 1.0

 no answer is possible without assumptions on training 
algorithm and network architecture

Measuring generalization
capabilty requires assumptions

How well will this model generalize on novel patterns?

Train set
patterns

The model
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Measuring generalization
capabilty requires assumptions
Very well!!!

Train set
patterns

The model

Test set
patterns

Measuring generalization
capabilty requires assumptions
Very bad!!!

Train set
patterns

The model

Test set
patterns
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Measuring generalization
capabilty requires assumptions
Another model?

Train set
patterns

The model

Test set
patterns

Measuring generalization
capabilty requires assumptions

Another model? …. It does not generalize well in this case!

Train set
patterns

The model

Test set
patterns
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Measuring generalization
capabilty requires assumptions
Which model is best to  have a good generalization?

Train set
patterns

Model 1

Model 2

No free lunch theorem

Intuitive version

 Without constraints on the considered problem, all the 
learning algorithms may show the same generalization error!!

Formally

 A training algorithm which produces a model f:X->Y , using a 
train set

 X= a fine set of inputs, Y= a finite set of outputs 

 Train set L={(xi,ti) | xi X, tiY}

 Test set T ={xi | xi X}

 The target function t:X->Y

 Error on test set  𝑒𝑡𝑒𝑠𝑡 = ∑ 𝐿(𝑡 𝑥𝑖 , 𝑓 𝑥𝑖 )௫௜ ் for some error
function L

If the target function t is uniformly sampled, for any learning 

algorithm mean(etest) is constant
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No free lunch theorem

It means that without assumptions

 The learned model which is better on a problem is worse 
on another:

 If A1 is better than A2 on certain kind of problems, 
there must be another kind of problems where A2 is 
better than A1

 averaged over all the problems, both algorithms are 
equally good.

 Even a random learning algorithm performs as well as the 
other algorithms

 Generalization is not possible without a (often implicit) bias 
of the algorithm

Measuring generalization
capabilty requires assumptions

Assumption 1: data distribution 

 The data on test set (working environment) are drawn from the 
same distribution as the data in train set

 Not obvious in real applications

 It means that the pair pattern-targets must be drawn from the 
same distributions
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Measuring generalization
capabilty requires assumptions

Occam's razor (law of parsimony): 

 the simplest explanation is usually the correct one

Assumption 2:
 the model  that produces the best generalization is the simplest 

(among those that classifies correctly the train set)

Such an assumption is about real life applications!

Next step … how do we measure simplicity/complexity?

Measuring simplicity

Better model 1, which is the simplest

Train set
patterns

Model 1

Model 2
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Measuring simplicity

Intuitive ideas: the complexity of a parametric model 
depends on 

 the number of roots the model can have

 the number of maxima/minima the model can have

 the number of patterns the model can interpolate

 the number of ways a set of patterns can be 
classified

 …

Measuring simplicity: Vapnik-
Chervonenkis dimension (VCD)

Intuitive definition of “shatter”

 A classifier  𝑓𝑤 is said to shatter a set of patterns  
𝑥1, . . 𝑥𝑘, if  by changing the parameters we  can 
classify the patterns in any possible way 

Formal definition of “shatter”

 for any  possible assigmament 𝑡1, . . 𝑡𝑘, ti{0,1}, there 
is a set of parameters w such that

𝑓𝑤 𝑥𝑖 > 0 if ti=1

𝑓𝑤 𝑥𝑖 < 0 if ti=0
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Examples of shattering

Example 1

 A linear function fw(x)= w1x+w0 can shatter the set 
{1,2}... (and any set of 2 reals) 

Example 2

 A polynomial fw(x)= w3x3+w2x2+w1x+w0 can shatter 
the set {0,1,2,3}... (and any set of 4 reals) 

Example 3

 The function fw(x)= tanh(w1x+w0 ) can shatter the set 
{1,2}... (and any set of 2 reals) 

Example 4

 The function fw(x)= sign(sin(w1x+w0 )) can shatter 
any set in R!!!

Vapnick-Chervonenkis
dimension (VCD)

Intuitive definition

 The VCD dimension of classifier  𝑓𝑤 is the 
dimension of the largest pattern set on which the 
model can produce any combination of outputs

Formal definition 

𝑉𝐶𝐷 𝑓𝑤 = max
௑

𝑋 , X is a set shattered by fw
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Intuitive ideas about VCD

VCD provides  lower bounds on

 the maximum number of roots
(models with a single input)

 the maximum number of minima/maxima
(models with a single input)

 the maximum number of regions partitioned by the 
model
(models with many inputs)

Examples of VCD

Examples

 linear functions fw(x)= w1x+w0

VCD(fw)=2

 Polynomials of order k, fw(x)= wkxk+…+w1x+w0 

VCD(fw)=k+1

 Neural networks with k neurons, single hidden layer, 
ReLU activation function 

VCD(fw)=k+1
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VCD of neural networks

Neural networks with p parameters, any number of layers, bounds 
for the order of growth of VCD(fw)

 FNN with Relu and L layers
Upper bound: O(pL log p),

Lower bound o(pL log p/L)

 FNNs with piecewise polynomial activation function 

Upper bound: O(pL2+pLlog p),

Lower bound o(pL log p/L)

 FNNs with, tanh, logsig, atan activation function 

Upper bound: O(p4)    … this may be overestimated

Lower bound o(p2)

VCD … the obvious general 
rule
 For a general neural network model, the smaller number of  

neurons/parameters/feature/levels, the smaller VCD

 But different architectures cannot be directly compared using 
the number of neurons/parameters/feature/levels.... since the 
architecture affect the VCD
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VCD and test error

Vapnik proved that 

 the problem is to learn a binary classifier fw
 V is VC dimension of fw

 Mean train error  𝑒𝑡𝑟𝑎𝑖𝑛 =
ଵ

ே
∑ 𝑡𝑖 − 𝑓𝑤(𝑥𝑖)ே

௜ୀଵ

 Mean test error  𝑒𝑡𝑒𝑠𝑡 =
ଵ

ே
∑ 𝑡𝑖

ഥ − 𝑓𝑤(𝑥𝑖ഥ )ேଶ
௜ୀଵ

 0<<1

 Train and test patterns (and targets) are drawn by the same 
distribution 

Then

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1)− log(

ర
)

ே
  1 − 

VCD and test error

Vapnik proved that (Vapnik 1989)

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1) −log(భష

ర
)

ே
  

 The larger the number of train samples N, the smaller the 
generalization error 

 Overfitting behaviour when training with few examples
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VCD and test error

Vapnik proved that (Vapnik 1989)

 P 𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛 +
V(log(మಿ

ೇ
) +1) −log(భష

ర
)

ே
  

 The larger VD dimension V, the larger generalization error 

 Complex models produce worse generalization

VCD and test error

It has been proved also the converse 

 When VCD is large then the generalization probability is large!!

 If VCD is infinitive, then it may be impossible to learn a model 
with bounded generalization error !!! 

 Can you guess why?
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Infinitive VCD

The function fw,b(x) =sin(w x+b),

 It  has infinitive VCD

 Suppose, you want to learn a target function t 
t(x)>0 for  x<1 and t(x) for x>0, 

then training with the pattern in the figure you expect to obtain 
the function f=sin( x/2+  /2)* *

* *
Infinitive VCD

But your training algorithm cal also produce

f=sin(4( x/2+  /2))

Yes, you can add more training patterns to avoid this, but …

* *

* *
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Infinitive VCD

…. this is a never end story

 In general, using architectures/activation functions with 
infinitive VCD is not a good idea in machine learning!!

 or, at leat,  we do not know how to manage them!! 

* *

* *

**

**
Generalization capablity in 
practice

In practice

 Suppose that you have a set of architectures that satisfies your 
purpose from the approximation and learning point of view and 
you want to chose the one that give you the best generalization, 
what to do?

 The VCD allows to estimate the error on test, but the VCD 
cannot be used in practice, since the bounds are too raw

Alternatives for choosing architectures, algorithms, ….

 Predict the perfomance on test set (by validation)

 Keeping weight small

 This includes Support Vector Machine …. not a matter of 
this course

 Pooling
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Validation by random 
subsampling

Let D be the available dataset

1. Divide D randomly into a train T and a validation subset V

2. Train the model on T

3. Evaluate the model on the validation set N 

4. Repeat k times

5. Calculate the average error rate

Validation k-fold cross 
validation

Let D be the available dataset

1. Divide D randomly into a train T1,..,Tk subsets

2. For i=1 to k

Train the model on all the set except Ti

Evaluate the model on Ti

3. Calculate the average error rate
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Validation k-fold cross 
validation

Validation: why does it
work?

Why does it work?

 Validation just allows to experimentally predict the error on test 
set

 We must assume that validation set is drawn from the same
distribution of test and train set
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Validation: what is it useful
for ?
 To compare different models (neural networks, Bayesian

models,  …)

 To compare different architectures (number of layers, number
of neurons, …)

 Decide when to stop learning

 ….

The role of weight sizes in 
neural networks

Does weight size affect generalization?

 network with small weights produce smooth 
function

 smooth functions look simpler than non-smooth 
ones 

Notice

 Networks with small weights are universal 
approximators …. 

 Can you prove this?
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The role of weight sizes in 
neural networks

A neural network a single layer and different weights sizes
(w=0.3, 0.4, 0.5)

VCD and weight size

An extended version of VC dimension (Bartlet)

 Usual mean test error  𝑒𝑡𝑒𝑠𝑡 =
ଵ

ே
∑ 𝑡𝑖

ഥ − 𝑓𝑤(𝑥𝑖ഥ )ேଶ
௜ୀଵ

 Error on train set
(patterns are shattered with a margin  )

etrain
 =

ଵ

ே
∑  𝑑(𝑡𝑖 

, 𝑓𝑤(𝑥𝑖)) ே
௜ୀଵ , 

𝑑(𝑡𝑖
 ,

𝑓𝑤(𝑥𝑖)) =1 if  𝑡𝑖 = 1 and 𝑓𝑤 𝑥𝑖
≥ ,  and  𝑑(𝑡𝑖

 ,
𝑓𝑤(𝑥𝑖))=0 otherwise 

 𝑑(𝑡𝑖
 ,

𝑓𝑤(𝑥𝑖)) =1 if  𝑡𝑖 = 0 and 𝑓𝑤 𝑥𝑖
≤ −,  and  𝑑(𝑡𝑖

 ,
𝑓𝑤(𝑥𝑖))=0

otherwise 

 V()  fat-shattering dimension

 V() i is the maximum dimension of a set shattered with error 
smaller than 
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VCD and weight size
An approximated version of VC dimension (Bartlet)

 P
ቌ

𝑒𝑡𝑒𝑠𝑡𝑒𝑡𝑟𝑎𝑖𝑛
 +

2
V(/16) ln( యర೐ಿ

ೇ(/16)
)log(578N) +ln( ర

భష)

ே
  

ቍ


 The bound has similar properties w.r.t those of VC,

 The larger V() the worse the generalization

 even if

 𝑒𝑡𝑟𝑎𝑖𝑛
 is larger than 𝑒𝑡𝑟𝑎𝑖𝑛

 V() is larger than V

VCD and weight size

Bartlet proved that 

 Neural network with sigmoidal activation function, having output in 
[-M/2,M/2] and module of derivative smaller than 

 Module of input smaller than B

 L layers

 Weights bounded by 

𝑉(  ) ≤  
ସ஻ଶ

ଶ

ெ



ଶ(௅ିଵ)

2 ௅(௅ାଵ)𝑙𝑜𝑔 3௅ିଵ 𝐿 − 1 ! (2𝑛 − 1) 𝑟ଶ  

 The smaller the weights, the smaller the fat-shattering dimension 
𝐕() !!

Weight dimension
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Keeping weight small

Early stopping

 Initialize the weights to small values

 Train the network 

 stop when error on validation increases

Validation
error

Train
error

Stop here

Keeping weight small

Penalty (weight decay)

 Add penalty on a weight to error

𝑒𝑡𝑟𝑎𝑖𝑛 =
1

𝑁
෍ 𝑡𝑖 − 𝑓𝑤(𝑥𝑖) + 𝑝(𝑤)

ே

௜ୀଵ

where

𝑝 𝑤 = ∑ 𝑤𝑖
ଶ

௜

Notice that
𝜕𝑝(𝑤)

𝜕𝑤𝑖

= −2wi

Weight
decay
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Keeping weight small

Constraint on neuron weights

 For each neuron k, activate a constraint when the input 
weight is larger than a given maximum 

𝑝𝑘(𝑤) = ൞
෍ 𝑤𝑖𝑘

ଶ − 𝑀

௜

𝑖𝑓 ෍ 𝑤𝑖𝑘
ଶ > 𝑀

௜

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Pooling layers

 Neurons of a layer are grouped in subset

 For each pattern, only a fraction of the neurons in a 
group are activated

 The output of the other neurons is not considered

 The active neurons an a group are selected by

 Taking the max (maxout)

 Taking a random set (dropout)
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Pooling layers

Pool 1

Pool 2

Trained
weights

Fixed
weights

Select by
• dropout,
• maxout, 

Pooling layers

 Pooling layers reduce the number of parameters and 
neurons

 Pooling layers reduce VC dimension
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Other explanations

 Early stopping helps because it predicts the test set 
performance

 Weight decay disactivate some of the weights

 Pooling removes similar features

 …

Putting everything together: 
approximation, learning, and 
generalization, the global picture
You have a set of architectures, you want to chose the bestone
from all point of views: approximation, learning and 
generalization

Antagonist goals

 Larger models improve approximation and learning, but they 
decrease generalization

 Larger weights improve approximation, but they decrease 
generalization

 Larger trainset improve generalization, but it makes learning 
more difficult
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Approximation, learning, 
generalization: the global picture

approximation learning generalization

Large train set worse better

Large weights better ? worse

Large model better better worse

Other constraints to considered 
to select the architecture

Constraints from the considered problem

 There is a minimum dimension for the model

 In a practical application, the  approximation (error) 
cannot be smaller than a minimum 

 Too small models cannot solve the problem as 
desired

 There is a maximum amount of data available for training 
and validation 

 Collecting/labelling data is expensive, …

 The computation resources are bounded

 Dimension of train set and model dimension affect the 
required computational resources
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Why generalization may be 
different from what expected
It is assumed that the patterns of  train, validation, and test 
sets are drawn from the same distribution

 The distribution is different in most of real life applications 
(performance on test much worse than on 
validation/train)

 Patterns in test may appear also in training 
(performance on test better than expected, when a 
lookup table is used)

 Often there are relationships between patterns 

 Patterns are not independent

 Using relationships improve performance on test

Each problem/architecture is
a singleton

 But remember that the generalization/approximation/learning 
capability depend in complex way on

 the model architecture
(the type, the number of weights/neurons, the size of the 
weights),  and also on

 the problem
(the type, the number of examples in train set)

 Thus expect that the rules in the previous slides work for 
networks with the same architecture and a different number of 
neurons/weights, but they may fail for different types of 
architectures

 In the following part of the course, we are going to see how 
the network architecture may play an important role in its 
properties
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Our analysis of generalization
does not include reliability

Reliability

 A measure of how much you can trust the prediction 

 Very important in verification problems

 Generalization theory is not of help

 It tells you how many errors your model will do on the 
whole test set

 It  does tell you anything about the reliability of the 
prediction on a single pattern

Reliability 
 A measure of how much you can trust the prediction 

 Very important in verification problems

 Common neural networks do not provide a reliability measure

 The prediction may be very unreliable for outliers!

 Separation surface is unreliable where there are no train 
patterns

+

-
--

-

- --

-
- -+

+
+

+
+

+
+

+
+

+
+

Separation
surface

An outlier
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Reliability in machine 
learning
Predictive models (bayesian models, autoencoder)

 Model trainset distribution 

 Predict the probability that a pattern is generated from the 
same distribution as that of training set

 Good to recognize outliers

 Good for verification problems 

Discriminative models (common neural networks, SVMs,..)

 Do not model trainset distribution

 Predict the most probable class (or targets)

 Good for classification problems

Autoencoders

 Input and output layer have the same number of 
neurons n

 One (or many) hidden layer with k<n neurons

 The network is trained to copy input x to output fw(xi)

n inputs
n outputs

k<n 
hiddens

𝑒𝑡𝑟𝑎𝑖𝑛 = ෍ 𝑥𝑖 − 𝑓𝑤(𝑥𝑖) 2

௜
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Autoencoders: how they are 
used

For verificaton

 During trainining, the autoencoder is trained to copy 
input to output

 During test, we  use (x-fw(x))2 as a measure of the 
probability that x belong to the train set distribution

For classificaton into k classes

 During trainining, the k-th autoencoder is trained to copy 
input to output using only positive patterns of each class

 Eventually error is changed to accommodate 
negative examples

 During test, it is returned the class of the autoencoder
that obtains the smallest errror (x-fw(x))2

Autoencoders: how they are 
used

For data generation

 After training, the decoder is feeded with some data. We 
expect that it generate a value that resemble those in 
the train set
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Autoencoders: how they are 
used

For feature dimension reduction

 During trainining, the autoencoder is trained to copy 
input to ourput

 During test, the hidden node output is used as 
compressed representation of the features

n inputs
n outputs

k<n 
hiddens

Compressed
representaton

decoder
encoder

Autoencoders: why they
work

Why autoencoders work

 The autoencoder cannot approximate the identity 
function

 The autoencoder are forced to compress the input 
information into a smaller space

 The smaller the hidden layers, the larger the 
compression

n inputs
n outputs

k<n 
hiddens
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Autoencoders: why they
work
 The function implemented by an autoencoder is

 An autoencoder implements a sort of non  linear 
version of PCA (Principal component analysis)

n inputs
n outputs

k<n 
hiddens

𝑓 𝑥 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2

Autoencoders vs common 
networks

It has been proved that  (me … and  Gori)

 The separation surfaces for autoencoders are 
always closed
(provided that the number of hidden neurons is 
smaller than the number of inputs)

 The separation surface of a FNN can be both 
open and closed
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Autoencoders vs common 
networks

 A contour plot of an autoencoder

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Autoencoders vs common 
networks

The separation surface of a feedforward network 
with 5 hiddens
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Autoencoders vs common 
networks

The separation surface of a feedforward network 
with 5 hiddens

Autoencoders vs common 
networks

Intuitively

 Autoencoders are advantageous for verification

 due to closed surface fact

 due to the fact that it is a predictve model
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A modern architecture: 
variational autoencoder

 Old autoencoders work only with one layer
encoders and one layer decoders

 In this way, the encoders and the decoders are 
not universal approximators

 With more layers, 

 surfaces may be open

 the identity function from input to output can be 
implemented even if the hidden layer is smaller
then the input 

• All the data is auto associated

A modern architecture: 
variational autoencoder

 Variational autoencoders use encoders and decoders 
with several layers, 

 The enconder takes in input x and 

 generates the parameters (mean , and variance
) of the distribution of latent hidden variable
p(z∣x)

 The decoder takes the variable z  and generate x

p(z|x)



x x
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A modern architecture: 
variational autoencoder

 By assuming that hidden variables p(z∣x) have a 
normal distribution, we limit the freedom of the 
encoding and the decoding networks.

 We can use  several layers

 Variational autoencoders are used to generate 
images, etc

p(z|x)



x x

Recurrent neural networks
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