
1

 DEPARTMENT OF INFORMATION ENGINEERING AND MATHEMATICS

Theoretical fundamentals of
artificial neural networks

Franco Scarselli

 About the course (dates, exams, credits…)
 (Very) short introduction to perceptron neural networks
 Aproximation capability
 Learning capability
 Generalization capability
 Autoencoders
 Recurrent neural networks
 Deep networks
 Graph neural network

OUTLINE

1

2

2

The course

 Four day course, every Tuesday
 On September 6th,7th, 8th, 9th,10-13,

on 20th 9-13
 I will upload the material after each lecture on

my home page,
https://www3.diism.unisi.it/~franco/

For students requiring credits

 The last day will include an exam
 The exam will be written
 I will give you/send you by email with a set

closed questions you have to answer
 You will return the answers (by email)
 After the course, I will mark them

 Just after the end of the exam, I will show you the
solution and we will sum up the topics tought
during the course

 The goal is that of assessing the students but also
that of fisxing and summing up our work

3

4

3

Machine learning

Difficult problems in computer science
 Machine vision, automatic drug design, speech

understanding, machine translation, …

 Nobody can write a program that solve them
 humans cannot solve them or
 humans are used to solve them, but …. they do not

know how they do!

Machine learning

Can you describe how you recognize an apple in images?
 It just looks like a red circleRed ?Circle?

5

6

4

Machine learning

Red circle?

Machine learning

If you cannot write a program that solves a problem
…. let computers learn the solution!!
 By examples

 e.g. examples of images containing or not containing
apples

 In most of the cases, humans and animals learn to solve
problems by examples

7

8

5

Machine learning: models

Consider a parametric model fw
 fw takes in input a pattern represented by vector z=[z1,..zn]
 fw returns an output vector o=[o1,..,om]

Example
 Input images: [z1,..zn] are the pixels
 Output: o=[0,..0,1,0,…0,0]

one hot coding of a set of objects
a one in i-th positions represents i-th object

fw
Apple

(Supervised) Machine
learning: problems
Classification problems
 the pattern has to be assigned a class in a finite set
 the output o

 two classes: o=1 or o=0 according to the class
 several classes: o=[0,…,1,…0], (one hot coding)

 Example: recognized the object represented by an image

Regression problems
 the pattern has to be assigned a set of (real) numbers
 Example: returns the probability that object represented by an

image is a cat

9

10

6

Machine learning:
supervised training
Supervised dataset
 A set of pairs D={(x1,t1), (xk,tk)} is a set of pairs pattern-target
 Usually split in

 Train set L: for training the parameters
 A validation set V: to adjust other parameters…..
 A test set T: to measure the expected performance of the

trained model
Training
 Define an error function ew based on train set
 Optimize ew by some optimization algorithm

fwx te

Machine learning:
error functions
Mean square error

𝑒𝑤 =
1

𝑘
 𝑡𝑖 − 𝑓𝑤(𝑥𝑖) ଶ

 the most one
 both for classification an regression problems

Cross entropy

𝑒𝑤 = 𝑡𝑖𝑗 log 𝑓𝑤(𝑥𝑖𝑗)

 often used in deep learning
 only for classification problems

11

12

7

Machine learning:
measuring performance
 The performance on test set: it depends on the problem
 Mean square error and cross entropy

 but usually not what we want
 Training error is often different from test error!!

 Classification problems
 Accuracy, F1, ROC AUC,…

 Regression
 Relative error, …

 Ranking problems
 profit, MAE, …

 ….

Artificial neural networks
(ANNs)
A class of machine learning models inspired by biological neural
networks
 A set of simple computational units (neurons)
 Neurons are connected by a network
 The behavior of the network depends on the interactions

among neurons
 The connectivity is learned

13

14

8

Artificial neural networks
(NNs)
Ridge neurons
 In the most common case, each neuron has

 a set inputs 𝑥1, …, 𝑥𝑛

 a set weights 𝑤1, …, 𝑤𝑛

 The neuron computes
 an activation level a = ∑𝑖𝑤𝑖𝑥𝑖

 an output level o= 𝜎 𝑎

 σ is called activation function ∑ 𝜎(.)

𝑤1

𝑤𝑛

𝑥1

𝑥𝑛𝑦 = 𝑣𝑖𝑥𝑖 + 𝑏

ௗ

ୀଵ

= 𝑣𝑥 + 𝑏
Vectorial
formulation

Types of neurons
Step

 Also called heavy-side

 It takes a “hard decision”

 rarely used in practice, since

 bad: It is not continuous

 bad: Its derivative is 0 everywhere

Sigmoidal

 e.g. tanh, arctan, logsig

 they take a “soft decision”

 the most used in (old) neural networks

 Good: continuous and non-zero derivative

 Bad: derivative is zero in practice for
very large and small inputs -5 -4 -3 -2 -1 0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

15

16

9

Types of neurons

Piecewise linear

 Rectifier Linear unit (ReLu), leaky ReLU

 It transmits the signal for positive values

 used in modern deep neural network

 Bad/good: its derivatives is 0 for negative inputs

 Bad/good: no upper bound
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

Multilayer feedforward
neural networks (FNNs)
Multilayer perceptrons… also called back propagation
networks… also called feedforward neural networks

 it is one of the oldest network models

 Neurons are disposed in layers: inputs, hiddens, outputs

 The neurons of each layer take in input the outputs of
the neurons of the previous layer

 No connection is allowed intra-layer and between non
consecutive layers

input layer outout layer

Hidden layers

17

18

10

Multilayer feedforward neural
networks (FNNs)

Mulilayer networks

 each neuron takes in input the output of other neurons

 a complex behaviour emerges from the simple activity of each neuron

 The k-th neuron in the l-th layer has a bias bl
k and weights wl

(1,k),.., wl
(dl-1,k)

 its output yl
k is

 The output yl of the l-th layer is

𝑦
 = 𝑤(,)

 𝑦
ିଵ + 𝑏

ௗషభ

ୀଵ

l-th layer

k-th neuron

𝑦 = 𝑊𝑙𝑦𝑙 − 1 + 𝑏𝑙 = 𝑤
𝑦

ିଵ + 𝑏

ௗషభ

ୀଵ

Matrix form Vector form

Multilayer feedforward neural
networks (FNNs)

Multilayer networks

 each neuron takes in input the output of other neurons

 a complex behaviour emerges from the simple activity of each
neuron

 e.g., the output of the first layer is

 e.g., the output of the second layer is

 e.g., the output of the third layer is

𝑦ଶ = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2

𝑦ଵ = 𝑊1𝑥 + 𝑏1

𝑦ଷ = (𝑊3 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2 + 𝑏3)

19

20

11

Interesting theoretical
properties of NN
 Approximation capability

The capability of NN model of approximating a target
function

 Generalization capability
The capability of a trained NN to generalize to novel
unseen patterns

 Optimal learning
The capability of training algorithm to produce the optimal
patterns avoiding local minima

Approximation capability

21

22

12

Practical question:
approximation capability

 What type of applications can be implemented by a FNN?

 Are FNNs limited in some sense?

Answer (ver 1.0)

 FNNs are universal approximators, so that they can
implement any application!

 Let us understand better the answer

 Let us understand the limits of such answer

Approximation capability

 Given a target function t, a precision , a norm ||.||, is
there a NN such that implements a function for which

|𝑡 − 𝑓 | ≤ 𝜖

holds?

 The intuitive answer is almost always yes
(By Cybenko; Hornik et alt.; Funahashi)

 True for most target functions t:
continuous function, discontinues but measurable, ….

 True for most of the norms:
sup norm, Euclidean norm, integral norms, …

 True for most of the feedforward NN
with ridge and gaussian activation functions,
sigmoidal, Relu, ….

23

24

13

Approximation capability for
continuous functions
Let

 3 be the set of functions be implementable by a FNNs
with activation function and 3 layers (one hidden layer)

3 = 𝑓 𝑥 𝑓 𝑥 = 𝑊2 𝜎 𝑊1𝑥 + 𝑏ଵ + 𝑏ଶ

 be a sigmoidal activation function

 C be the set of continuous function

 ||. ||ஶ be the sup norm, namely for two functions
𝑓

ஶ
= max

௫
|𝑓 𝑥 |

Theorem 𝟑 is dense in C i,.e.,for any , any 𝒕 ∈ 𝑪, there
is a 𝒇 ∈ 𝟑 such that

𝒕 − 𝒇
ஶ

≤ 𝝐

Approximation capability:
sketch of the proof

A sketch of the proof will help to better understand NNs

Focus on

 FNNs with one hidden layer

 a single outpiut

 linear activation functions in outputs

 sigmoidal activation function inn hidden layer

Two step proof

 Approximation of functions on R (single input)

 Extension to function on Rn

𝑦 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2 = 𝑤
ଶ

ୀଵ

 𝑤,
ଵ𝑥 + 𝑏

ୀଵ

+ 𝑏2

25

26

14

Sketch of the proof:
single input functions

The main idea: four step proof

1. A single neuron implements sigmoid function

2. A sigmoid can approximate a step function

3. Many step functions can approximate a staircase function

4. Staircase function can approximate any continuous function

Sketch of the proof:
single input functions

A neural network with one hidden neuron and increasing input-to-
hidden weight

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

w 1

27

28

15

Sketch of the proof:
single input functions

 A staircase function is made by many
step functions

 Staircases functions can approximate
any continuous function.

 The precision of approximation
improves increasing the number of
steps

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

Sketch of the proof:
another approach

The main idea: two step proof

1. For any polynomial p, we can construct FNNs with analytic
activation function that approximates p

2. Polynomials can approximate any continuous function

29

30

16

Sketch of the proof:
approximating polynomials

Analytic functions … let us remember what is

 A function is analytic if for each x0 its Taylor series converges to
f in a neighborhood of x0

lim
௫→ 𝑆௫

𝑇(𝑥) = 𝑓(𝑥)

 Taylor series of a function f developed up to T terms computed
in x0 with rest

𝑆𝑥0
𝑇 𝑥 =

𝑓 (𝑥0)

𝑘!

்

ୀ

(𝑥 − 𝑥0) [+𝑅𝑇 𝑥 − 𝑥0]

Sketch of the proof:
approximating polynomials

Analytic functions … useful intuitive facts

 Analytic functions looks like polynomials (their Taylor series)

 Actually, they looks like polynomials except for the error RT(x-
x0), which is smaller than O((x-x0)T)

 𝜎 𝑥 = 𝜎 𝑥 − 𝑥0 +
௫ି௫ ఙᇲ(௫ି௫)

ଵ!
+

௫ି௫ ଶఙᇲ(௫ି௫)

ଶ!
+

⋯ .
௫ି௫ ்

ି
ଵఙ షభ ௫ି௫

்ିଵ !
+ 𝑅𝑇(𝑥 − 𝑥0)

 Thus, a neuron with an analytic activation function looks like a
polynomial…

 … then, an FNN looks like a combination of polynomials

31

32

17

Sketch of the proof:
approximating polynomials

Go back to the original goal …

 for any polynomial p(x)=c0+c1x+c2x2++...+crxr, construct FNNs
with analytic activation function that approximates p

 an FNN looks like a combination of polynomials…

 the goal is easily reached, just find the right combination …

 Theorem. Suppose that is analytic in a neighborhood of
x0, then 𝐥𝐢𝐦𝟎

𝐩𝛂 𝐱 = 𝐩(𝐱), where

𝑝 𝑥 = lim
𝑝 𝑥 = lim

 (−1)ା
𝑐𝑘

𝛼(𝑘)
𝑥0)

ୀ

ୀ

 𝑙𝑥 − 𝑥0

This is a FNN

r neurons

First layer
weight

Hidden biasSecond layer
weight

Sketch of the proof:
approximating polynomials
 Theorem. A polynomial p(x)=c0+c1x+c2x2++...+crxr,

can be approximated (up to any precision) by a FNN
with r neurons!

X2

A FNN with
2 neurons

33

34

18

Sketch of the proof:
functions with several inputs

How can we extend our results to functions with
many inputs?

 Let us start with a simple case: when the target
function is a ridge function

Ridge functions

 A ridge function g:Rn->R, can be written as
𝑔 𝑥 = ℎ 𝑤𝑥

where h is a function of single input

 Ridge functions are constant on hyperplanes
orthogonal to the ridge

 Ridge functions can be approximated by FNNs

The direction of
the ridge

Constant on
this hperplane

The ridge

35

36

19

Sketch of the proof:
functions with several inputs

How can we extend our results to the general
case of functions with many inputs?

 Just prove that

Theorem For any target function t:Rn->R and
any , there exist ridge functions g1,..,gk, such
that 𝑡 − 𝑓 ≤ 𝜀 where

𝑓 𝑥 = ∑ 𝑔𝑖(𝑥)
ୀଵ

Solution 1: the Radon
transform

 The Radon transform Rf of a function f allows to
specify f in terms of their integrals over hyperplanes

 It is used in computed axial tomography (CAT
scan), electron microscopy, …

 The inverse Radon transform is

f 𝑥 = ∫ 𝑅𝑓(𝑤𝑥, 𝑤)
௪ ୀଵ

dw

Intuitively, it is the integral
of f over the hyperlane
orthogonal to w and passing
through x

Sum over all the hyperplanes
to compute f(x)

37

38

20

Solution 1: the Radon
transform

 The inverse Radon transform contains an integral,
which can ne approximated by finite sum

f 𝑥 = ∫ 𝑅𝑓 𝑤𝑥, 𝑤 𝑑𝑤 ≈
௩ ୀଵ

∑ 𝑅𝑓(𝑤𝑖𝑥, 𝑤𝑖)𝑑𝑤𝑖
ୀଵ

 The result is a sum of ridge functions!!
This is a
ridge
function

Solution 2: combination of
polynomials

How can we extend our results to functions with many
inputs?

 Restrict your attention to polynomials and prove that

Theorem For any target polynomial t:Rn->R, there
exist ridge polynomial g1,..,gk, such that

𝑡 𝑥 = ∑ 𝑔𝑖(𝑥)
ୀଵ

39

40

21

Solution 2: combination of
polynomials

 Notice that the space of polynomials is related to the linear space
of its parameters

 A generic polynomial with 3 variables and degree 3

𝑝 𝑥1,
𝑥2, 𝑥3 = 𝛼1𝑥ଵ

ଷ + 𝛼2𝑥ଵ
ଶ 𝑥ଶ

ଵ + 𝛼3𝑥ଵ
ଶ𝑥ଷ

ଵ + 𝛼4𝑥ଵ
ଵ 𝑥ଶ

ଵ 𝑥ଷ
ଵ + ⋯

 Its representation as a vector in linear space
[𝛼1, 𝛼2, 𝛼3, 𝛼4, …]

 The dimension of the space of polynomials with n variables and
degree r is

𝑁 =
𝑟 + 𝑛 − 1

𝑛 − 1

Solution 2: combination of
polynomials

It has been proved that

 a set of ridge polynomials in the form of

𝑤1𝑥 + 𝑏1
𝑟 ,

𝑤2𝑥 + 𝑏2
𝑟, 𝑤2𝑥 + 𝑏2

𝑟,….

for random vi, bi are, in most of the cases, linearly independent!!

 With 𝑟 + 𝑛 − 1
𝑛 − 1

random ridge polynomials you can, in most of

the cases, generate the full space of polynomials of n variables
and degree r!!

41

42

22

Other solutions

 Other solutions exist, e.g. based on Fourier transform, …

Possible extensions

Universal approximation

 Activation functions

 tanh, arctan, ReLU, step, any analytic function, any step
function

 Not enough: polynomials
• Used alone, they can implement only other polynomials

 Error norm

 Sup, L1, L2, … sobolev,…

 Architecture

 Any number of inputs and outputs

 At least one hidden layer is required!

43

44

23

Back to practice

 In general, the FNNs described by the mentioned results
on approximation theory are not encountered in practical
experiments

 learning algorithm often produce FNNs without an
intuitive explanation

 But in particular cases, the consequences of
approximation theory are evident also in practice.

Back to practice: often seen in
experiments with three layer
networks

About weight dimension approximating staircase

 approximation by sigmoids is reached by large weights in first
layer and small weights in the second layer

 large weights produce saturation in sigmoids and make
learning difficult

 ReLUs do not have saturations, but very large weights may
produce large gradients

 In practical experiments,

 such a difficulty is encountered, when the target function
looks likes a staircase, e.g. it is discontinuous somewhere

 In this case learning is difficult

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

45

46

24

Back to practice: often seen
in experiments with three
layer networks
About weight dimension, approximating polynomials

 With sigmoids approximation is reached by small weights
in first layer and large weights in the second layer

 such a configuration makes the network sensitive to
weight noise and makes learning difficult

 In practical experiments,

 such a difficulty is encountered, when the target
function is a polynomial and the activation function is
a polynomial!!

𝑝 𝑥 = lim
𝑝 𝑥 = lim

 (−1)ା
𝑐𝑘

𝛼𝑘
(𝑘)

𝑥0)

ୀ

ୀ

 𝑙𝑥 + 𝑥0

Back to practice: weight
dimension

Notice that

 in several applications the target function is almost polynomial
(e.g., in dynamic system identification)

 common tricks to alleviate the problem

 add input to output weights

 use neural network in parallel with a polynomial approximation

 ReLU does not suffers from the problem with polynomials: this a
good new for the modern architectures that tend to use ReLUs!!

 Notice however that if the polynomial to be approximated is
very high order then also ReLUs are not a good solution may
still suffer from large weights !!!

 Modern architectures and learning algorithms use a number of
tricks that alleviate/control/change the effect of weight dimension
so that the mentioned problem may be change consequently: eg
weigh decay, batch normalization, …

47

48

25

Back to practice: ridge
direction
What about the directions (not dimension) of ridges 𝑤ଵ

ଵ,…, 𝑤
ଵ?

𝑦 = 𝑤
ଶ

ୀଵ

 𝑤
ଵ𝑥 + 𝑏

ୀଵ

+ 𝑏2

Back to practice: ridge
direction

 The results from Radon transform tell us that the directions and
the biases can be chosen by a grid on the ball |w|=1

 When combined with a selection of the biases from a grid, the
hyperplanes wix=bi constitutes a partition of input domain !

hyperplanes
wix=bi

Directions of the ridges

49

50

26

Back to practice: ridge
direction

 The results from polynomial combination suggest that ridges and
the biases (the partition) can be even random!

A constructive algorithm from
theory
A simple algorithm (old work by me and Tsoi)

1. Chose the first hidden layer weights and biases from a in a
random way (or uniformly from a grid)

2. Make the first hidden layer weights very small (or very large)

3. Adapt only the send layer weights and bias to minimize the
error function

Notice that

 this algorithm does not suffer from local minima!!!!

(the error is quadratic w.r.t the last layer parameters)

 It works also for many outputs

51

52

27

The error is quadratic w.r.t
the last layer parameters

Let us look at a FNN formulas using matrices

The dataset

 {(x1,t1), … (xk,tk)} a set of patterns

 𝑋 = 𝑥1, . . 𝑥𝑘

Set of Inputs in matrix form

 𝑇 = [𝑡1, . . 𝑡𝑘] Set of targets in matrix form

The network output Y

 𝐻 = 𝑊1𝑋 + 𝑏1
𝟏 Matrix of hidden

 𝑌 = 𝑊2𝐻 + 𝑏2𝟏 Matrix of outputs

where
𝟏 = 1 …

.
1

W1,W2, are the input to hidden weight matric and the hidden to output
weight matrix, respectively

The error is quadratic w.r.t
the last layer parameters

Let us look at a FNN using using matrixes

The error

 𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑌 2

It is quadratic

𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑌 2

= 𝑣𝑒𝑐 𝑇 − 𝑊2𝐻 + 𝑏2𝟏 2

= 𝑣𝑒𝑐 𝑇 − 𝑣𝑒𝑐 𝑊2𝐻 + 𝑏2𝟏 2

= 𝑣𝑒𝑐 𝑇 − 𝑯ᇱ𝑰𝒓 𝒗𝒆𝒄 𝑊2 − 𝟏ᇱ𝑰𝒓
𝑏2 2

= 𝑣𝑒𝑐 𝑇 − [𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓
] [𝒗𝒆𝒄 𝑊2 ,

, 𝑏2] 2

Vec transforms a
matrix into a vector

Kroneker
product

Vector-matrix
product

Identity
matrix

Compatibility between
Kronecker product and vec

𝑣𝑒𝑐 𝐴𝐵𝐶 = 𝐶ᇱ𝐴 𝑣𝑒𝑐 𝐵
𝑣𝑒𝑐 𝐵𝐶 = 𝐶ᇱ𝐼 𝑣𝑒𝑐 𝐵

Vector of the
paramters

53

54

28

Constructing the network:
ELM and fixed basis functions
Extreme learning machines (ELM) (Huang)

1. In ELM only the last layer weights and bias are trained

2. the second layer weights are computed by the pseudoinverse

Claimed advantages

 very fast to train

 approximation property is conserved

 good generalization ? (we will discuss this later)

In general, this is called approximation by fixed basis functions

 Polynomial

 Gaussian functions

 Support vector machine

 …

Constructing the network: ELM
and fixed basis functions
So, why should we use FNN instead of ELM?

 Approximation by FNNs require a smaller number of neurons!

 We have to discuss about resource usage, not only about
universal approximation!

55

56

29

Back to the initial practical
question

 What type of applications can be implemented by a FNN?

Answer (ver 1.0)

 Almost all common FNNs are universal approximators: they can
implement any application!

Advanced question

 Does this mean that all the FNNs are equivalent?

Answer (ver 2.0)

 No, the precision of the approximation depends on the FNN
architecture, the number of neurons/parameters ….

Going beyond universal
approximation

The approximation precision depends on

 the complexity of the model

 the measure of the approximation

 the complexity of the function to be approximated

The idea

 fix a set of functions having a given complexity

 fix a measure of approximation

 study how the approximation quality changes with the number
of neurons

57

58

30

Going beyond universal
approximation

Barron proved that

 Let t be the target function, T is its Fourier transform and

𝐶𝑡 = න 𝑣 𝑇 𝑣 𝑑𝑣
ோ

 There is a FNN fk with sigmoidal activation function and k
hiddens

න 𝑡 − 𝑓𝑘

2 ≤
2𝑟𝐶𝑡 2

𝑘

Thus,

 The square error decreases linearly with the number of hiddens

How much t is complex

Linear convergence of error
with the number of neurons

Constructing the network

 There is a FNN fk with sigmoidal activation function and k
hiddens

න 𝑡 − 𝑓𝑘

2 ≤
2𝑟𝐶𝑡 2

𝑘

Such a bound can be achieved by this procedure which iteratively
adds a neuron at each step

1. Set f0 (x) equal to the constant 0 function

2. Set fi (x)= fi-1(x) + (wx+b)

 Optimize ,,w,b
(the error must be decrease for a given amount O(1/i))

3. Repeat 2 until the desired error is achieved

59

60

31

FNNs vs basis functions

Barron 1993 proved also that

 For every choice of basis function h1,..,hk,, S being the set of
functions spanned by h1,..,hk and Tc being the set of functions
whose complexity is smaller than C, we have

sup
௧∈்

min
∈ ௌ

න 𝑡 − 𝑓𝑘
,ଵ

≥
𝐶

𝑛 𝑘

where is an universal constant

Thus,

 There are target functions for which approximation by ELM,
polynomials, … is much worse than approximation by FNN!

 It is O(1/k) in FNN wrt O(1/ 𝑘
)

 When the input space is large, the difference is huge

Sublinear convegence

FNNs vs ELMs: an intuitive
explanation

Back to the ridge grid concept

 When the first layer parameters are random, the hyperplanes
wix=bi forms a sort of random grid

 But, when those neurons are really useful?

 If the target function t is a ridge, only neurons having the
direction of the ridge are useful

 If the target function t is constant in a region, the neurons
changing in such a region are not useful

Neurons useufl
to approximate a
ridge function

61

62

32

The complexity of different
classes of functions

Back to Barron result

 There is a FNN fk with sigmoidal activation function and k
hiddens

න 𝑡 − 𝑓𝑘

2 ≤
2𝑟𝐶𝑡 2

𝑘

 How large is Ct in practice?

How much t is complex

The complexity of different
classes of functions

Barron proved that

 Ridge functions, t(x)=h(wx),

𝐶𝑡 ≤ 𝑤 ℎ′(0)

The complexity does not depend on number of inputs!

 Radial basis functions, t(x)=h(|x|),

𝐶𝑡 ≤ 𝑛ଵ/ଶ

It depends on input dimension

 For polynomial, Barron proved that 𝐶𝑡 depends only on the
coefficients.

But it is even better, a finite number of sigmoidal neurons are
required for any degree of approximation

63

64

33

The complexity of combined
functions

Barron proved that

 Translation, t(x)=h(x+b)

𝐶𝑡 = 𝐶ℎ

Translation does not affect complexity

 Linear combination, 𝑡 𝑥 = ∑ 𝑖ℎ𝑖(𝑥)
ୀଵ

𝐶𝑡 = 𝑖𝐶𝑖

ୀଵ

The complexity of combined
functions

Barron proved that

 Product, t(x)=h(x)*g(x)

𝐷𝑡 = 𝐷ℎ 𝐷𝑔

𝐶𝑡 = 𝐷ℎ 𝐶𝑘 + 𝐷𝑘 𝐶ℎ

 where

𝐶𝑡 = න 𝑣 𝑇 𝑣 𝑑𝑣
ோ

 𝐷𝑡 = න 𝑇 𝑣 𝑑𝑣
ோ

(T is the Fourier transform of t)

65

66

34

Which are the complex
functions?

A doubt

 For all the above classes functions (except for gaussian), the
error decreases linearly with number of hidden units

 Even if the combined function are simple

 Which are the functions which requires a lot of hiddens?

Intuitive answer

 Complex functions cannot be defined from simple functions in
few steps!!!

 Several products, sums … are required

 Or several compositions t(x)=F(h(x))) are required!!!

 Back on this later

 this is about deep learning !!!!

Final pratical remarks about
approximation capability
Properties

 most of the common models are universal approximators

 but different architectures have different properties!!

In practice

 The suggestion is the most obvious, the best architecture
depends on the problem

67

68

35

Learning capability

Practical question: learning
capability

Now, we know what a FNN can approximate any
function, but what about what a FNN can learn?

69

70

36

Learning in neural networks

Optimization of error function ver 1.0

 by gradient descent

 update the parameters according to

𝑤 𝑡 + 1 = 𝑤 𝑡 −
𝜕𝑒𝑤

𝜕𝑤

until a desired minimal error is obtained

Learning in neural networks

Gradient descent

71

72

37

Learning in neural networks

Gradient computation

 by an algorithm called backpropagation

 linear time w.r.t. the number of neurons

 not a matter of this course

Optimization of error function

 Several variants of gradient descent exist: momentun,
batch, …

 Several other optimization algorithms exist: adam, resilient
backpropagation, conjugate gradient, Newton, …

 Not matter of this course

An old experiment

The idea (Lawrence et al.)

 construct a random network N1 with k1 hiddens

 generate a random domain and use N1 to generate the
targets

 train another network N2 with k2 hiddens

 When k2>=k1, the best minina has cost 0!

73

74

38

An old experiment
Results

 target network k1=10

 5 inputs,5 output

 100 patterns train set

 Experiments repeated several times

Train set

An old experiment
Results

 target network k1=10

 5 inputs,5 output

 100 patterns train set

 Experiments repeated several times

Test set

75

76

39

An old experiment

Conclusions

 Training often does not produce the optimum

 Training is a challenge

 The error improves increasing the number of hidden units

 The more the parameters, the better the
approximation

 The error on test set may increase even it increases on
train set

 Generalization is a challenge

Practical question: learning
capability

Why does training fail

Answer (ver 1.0): local minima

 learning capability depends on the
presence/absence of local minima in error function

 Theoretical results on this are few and incomplete
… let us review some of them for three layer
networks

 Later we will discuss about deep architectures

77

78

40

Absence of local minina
There is no local minimum if

 Network

 a single neuron (with sign activation)

 Patterns

 Linearly separable patterns

 Proof: look at the separation surface and how it can be moved

+

+

++
+

-

-

-

--
sign

w1
1

w2

Separation
surface

Ridge
direction

Absence of local minina

Extension to FNNs (Gori et al.)

 Network

 one hidden layer

 sigmoidal outputs, one hot coding of C classes

 hidden to output weights are separated for each class

 Patterns

 Linearly separable

input layer output layer

+
++

+

-
-

- *
*

*

79

80

41

Absence of local minina

(At least) so many neurons as patterns (Yu et alt.)

 Network

 One hidden layer with n neurons

 Linear outputs

 Patterns

 n-1 distinct pattern

So many neurons as
patterns

Proof… the idea
Remember that

𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑌 2= 𝑣𝑒𝑐 𝑇 − [𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓
] [𝒗𝒆𝒄 𝑊2 ,

, 𝑏2] 2

= 𝑣𝑒𝑐 𝑇 − 𝑅𝑝2
2

p2= [𝒗𝒆𝒄 𝑊2 ,
, 𝑏2]

R=[𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓
],

 with neurons and n−1 patterns R 𝑖𝑠 a square matrix

 if R is full rank, than the linear system has a solution!

0=vect(T)-Rp2

 The trainset can be perfectly learned (error =0)!

81

82

42

So many neurons as
patterns

Proof… the idea
Remember that

𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑅𝑝2
2

p2= [𝒗𝒆𝒄 𝑊2 ,
, 𝑏2]

R=[𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓
],

 The gradient is
𝜕𝑒

𝜕𝑝2

= 2 𝑣𝑒𝑐 𝑇 − 𝑅𝑝2
ᇱ𝑅

 If R is full rank, than the gradient is 0 only when the error is 0!

The rest of the proof (skipped)

 When R is not full rank (very rare case in practice), then equilibrium
points correspond unstable points

Absence of local minina

Linear networks (Baldi)

 Network

 One hidden layer

 Linear outputs

 Patterns

 Any set of patterns

 The result

 The error surface show a global minima and several
saddle points but no local minima

83

84

43

Presence of local minima

Many minima for a perceptron (Auer 1996)

 Network

 A single perceptron

 Sigmonidal activation function

 Patterns

 K patterns, ad hoc displacing

 Number of local minima

 At least k

Presence of local minima
A sketch of the proof for a single input perceptron

 Only the patterns where the neurons are not saturated affects
the derivative of the error

 The following figure shows a local minima, as we can only
improve the errors on the circled patterns

 The figure show a sigmoid,

-- - - -- --

+ ++++

-

++++

Error decreases
if saturation increases

85

86

44

Presence of local minima

A sketch of the proof for a single input perceptron

 There are many minima

+ ++++

-- - - - -

+

-

+++

--

Presence of local minina

Extended XOR (Bianchini)

 Network

 One hidden layer with 2 neurons

 Sigmonidal output activation function

 Patterns

 5 patterns x1 x2 target

0 0 0

0 1 1

1 0 1

1 1 0

0.5 0.5 0

87

88

45

Presence of local minina

Extended XOR (Bianchini 96)

+

- +

-

-
Optimum

Local
mimum

Moving the
separation surface
Increases the error

Practical question: learning
capability

Why does training fail?

 Does really training fail for local minima?

We may have disregarded the role of

 attracting regions

 flat regions (and saddle points)

 regions with deep valley

89

90

46

Attracting regions

Attracting regions (local minima to infinity)

 The error decrease on a path which makes weights larger
and larger

 The minima, if it exists, it is at infinity: it can be both a global
minimum or a sub-minimum

Why learning is difficult

 Large weights may produce numerical problems

 Large weights may produce large oscillations during learning

 Lager weights produce saturations in networks with sigmoids
(and flat error surface)

Attracting regions

Networks with only ReLU activations

 Some attracting regions may due to the approximation of
discontinuous or unbounded functions (recall approximation
by step functions)

 Other may due to soft max loss

 ….

Networks with sigmoidal activation

 They may have a large number of attracting regions, due to
the saturation of the sigmoid when the weights are large

 If output neurons use sigmoids and the error function is MSE

 a perfect learning of the train set requires for infinitive
weights!

91

92

47

Flat regions (and saddle
points)
An example of an error surface

Flat regions (and saddle
points)
Why learning is difficult

 No ways to distinguish between saddle points, flat surface
and minima

 Very slow convergence rate

 Numerical errors

In both networks with sigmoids and ReLU

 In sigmoids flat surfaces are due to saturations

 In ReLU, flat surfaces are due to the constant part ot ReLU

 Some approaches use
• Leaky ReLU (x)=x if x>0, (x)=ax otherwise, with 0<a<1

• Exponential linear unit (ELU)
(x)=x if x>0, (x)=a(e-x-1) otherwise, with a>0

• ….

93

94

48

Regions with deep valleys

Condition number for a matrix A

 The ratio between the largest and the minimum
eigenvalue

 k(A) =max(A)/ min(A)

An error function ew having Hessian matrix 2ew with a large
condition number

 the error function has a deep valley

 optimization is difficult when k(2ew) is large

 Explanation 1.0

Gradient descent follows a zig-zag path!!

Regions with deep valleys

95

96

49

Regions with deep valleys

Regions with deep valleys:
a theoretical viewpoint

Remember gradient descent

 ew (t) error function at iteration t w.r.t. weights w(t)

 learning rate 𝑒𝑤(𝑡) gradient

𝑤 𝑡 + 1 = 𝑤 𝑡 − 𝑒𝑤(𝑡)

 Gradient descent converges if 𝑒𝑤 is convex (or if it starts
in an attraction basin)

 Let us assume an optimal is chosen

97

98

50

Regions with deep valleys:
a theoretical viewpoint

It can be proved

 Let w* be the optimal weights and 2e the Hessian matrix in w*

𝑤
∗

−𝑤 𝑡 ≤
𝑘 𝛻2𝑒 − 1

𝑘 𝛻2𝑒 + 1
𝑤

∗
−𝑤(𝑡 − 1)

 Thus, the converge rate for error is

𝑂
 ఇଶ ିଵ

 ఇଶ ାଵ
/log (𝜀)

Regions with deep valleys:
a theoretical viewpoint

 In a general case, the function may not be strongly convex
(some eigenvalue is 0)

 In this case, condition number of Hessian may be infinitive

 Let ew .satisfies the following (L - Lipschitz continuous gradient
function, L-lcg function)

𝛻𝑒𝑤1 −
𝛻𝑒𝑤2 ≤ 𝐿 𝑤1 − 𝑤2

It can be proved

 Basic gradient descent is 𝑂 𝐿/𝜀

 Newton is 𝑂 𝐿/𝜀

99

100

51

Regions with deep valleys:
a theoretical viewpoint

A lower bound

 For any , there exists an L-lcg. function f , such that any first-
order method takes at least

𝑂 𝐿/𝜀

steps

Intuitive message 1

 Learning may be difficult even if the error function
has only a minimum: the minimum may be at the
bottom of a (badly conditioned) deep valley!!

101

102

52

Intuitive message 2

 Learning may bed difficult even if the error function
has only a minimum!!

Learning capability:
a negative result

Loading problem (decision version)

 Given a neural network architecture and a set of training
examples, does there exist a set of edge weights for the
network so that the network produces the correct output for all
the examples ?

It has been proven that the following Judd

 Loading problem is NP-complete!!

The theorem holds for

 binary functions

 network with threshold activation functions

103

104

53

Learning capability:
a negative result

Extensions proven by Judd

 only two layers

 fan-in smaller or equal 3

 Only 67% are required to be correct

 …

Final remarks about learning
capabibility
In practice

 even if a model can approximate a target function, such a
model may not be easy to learn

 learning capability depends

 on the problem (train set)

 the adopted model

 A general rule works in practice!!!

 the smallest the data, the simplest the learning

 the larger the model, the simplest the learning

105

106

54

Other aspects we have not
considered

Information contained in features

 Noise and lack of information may prevent perfect
loading

 It is difficult to know whether your learning
algorithm works

 When the information in feature is very few, you
may want to adopt transductive learning methods

Error function adopted for learning

 Training error function is often different from test
error function

 You may want to try different train error function

Other aspects we have not
considered

Patterns are trained independently

 Good precision does not ensure that derivatives are
approximated

 Relationships between patterns are not ensured

 There are machine learning methods suitable for
this case

107

108

