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 DEPARTMENT OF INFORMATION ENGINEERING AND MATHEMATICS

Theoretical fundamentals  of 
artificial neural networks

Franco Scarselli

 About the course (dates, exams, credits…)
 (Very) short introduction to perceptron neural networks
 Aproximation capability
 Learning capability
 Generalization  capability
 Autoencoders
 Recurrent neural networks
 Deep networks
 Graph neural network
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The course

 Four day course, every Tuesday
 On September 6th,7th, 8th, 9th,10-13, 

on 20th 9-13
 I will upload the material after each lecture on 

my home page,
https://www3.diism.unisi.it/~franco/

For students requiring credits

 The last day will include an exam
 The exam will be written
 I will give you/send you by email with a set 

closed questions you have to answer
 You will return the answers (by email)
 After the course, I will mark them

 Just after the end of the exam, I will show you the 
solution and we will sum up the topics tought
during the course

 The goal is that of assessing the students but also
that of fisxing and summing up our work
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Machine learning

Difficult problems in computer science
 Machine vision, automatic drug design, speech 

understanding, machine translation, …

 Nobody can write a program that solve them
 humans cannot solve them or
 humans are used to solve them, but …. they do not 

know how they do!

Machine learning

Can you describe how you recognize an apple in images?
 It just looks like a red circleRed ?Circle?

5

6



4

Machine learning

Red circle?

Machine learning

If you cannot write a program that solves a problem
…. let computers learn the solution!!
 By examples

 e.g. examples of images containing or not containing 
apples 

 In most of the cases, humans and animals learn to solve 
problems by examples
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Machine learning: models

Consider a parametric model fw
 fw takes in input a pattern represented by vector z=[z1,..zn]
 fw returns an output vector o=[o1,..,om] 

Example
 Input images: [z1,..zn] are the pixels
 Output: o=[0,..0,1,0,…0,0]

one hot coding of a set of objects
a one in i-th positions represents  i-th object

fw
Apple

(Supervised) Machine 
learning:  problems
Classification problems
 the pattern has to be assigned a class in a finite set
 the output o

 two classes:  o=1 or o=0 according to the class
 several classes: o=[0,…,1,…0], (one hot coding)

 Example: recognized the object represented by an image

Regression problems
 the pattern has to be assigned a set of (real) numbers
 Example: returns the probability that object represented by an 

image is a cat
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Machine learning:  
supervised training
Supervised dataset
 A set  of pairs  D={(x1,t1), (xk,tk)} is a  set of pairs pattern-target
 Usually split in

 Train set L: for training the parameters
 A validation set V: to adjust other parameters…..
 A test set T: to measure the expected performance of the 

trained model
Training
 Define an error function ew based on train set
 Optimize ew by some optimization algorithm

fwx te

Machine learning: 
error functions
Mean square error

𝑒𝑤 =
1

𝑘
෍ 𝑡𝑖 − 𝑓𝑤(𝑥𝑖) ଶ

௜

 the most one
 both for classification an regression problems

Cross entropy

𝑒𝑤 = ෍ ෍ 𝑡𝑖𝑗 log 𝑓𝑤(𝑥𝑖𝑗)

௝௜

 often used in deep learning
 only for classification problems
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Machine learning: 
measuring performance
 The performance on test set: it depends on the problem
 Mean square error and cross entropy

 but usually not what we want
 Training error is often different from test error!!

 Classification problems
 Accuracy, F1, ROC AUC,…

 Regression 
 Relative error, …

 Ranking problems
 profit, MAE, …

 ….

Artificial neural networks 
(ANNs)
A class of machine learning models inspired by biological neural 
networks
 A set of simple computational units (neurons)
 Neurons are connected by a network
 The behavior of the network depends on the interactions 

among neurons
 The connectivity is learned
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Artificial neural networks 
(NNs)
Ridge neurons
 In the most common case, each neuron  has

 a set inputs  𝑥1, …, 𝑥𝑛

 a set weights  𝑤1, …, 𝑤𝑛

 The neuron computes
 an activation level a = ∑𝑖𝑤𝑖𝑥𝑖

 an output level  o= 𝜎 𝑎

 σ is called activation function ∑ 𝜎(.)

𝑤1

𝑤𝑛

𝑥1

𝑥𝑛𝑦 =  ෍ 𝑣𝑖𝑥𝑖 + 𝑏

ௗ

௜ୀଵ

=  𝑣𝑥 + 𝑏
Vectorial
formulation

Types of neurons
Step

 Also called heavy-side

 It takes a “hard decision”

 rarely used in practice, since

 bad: It is not continuous

 bad: Its derivative is 0 everywhere

Sigmoidal

 e.g. tanh, arctan, logsig

 they take a “soft decision”

 the most used in (old) neural networks

 Good: continuous and non-zero derivative

 Bad: derivative is zero in practice for
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Types of neurons

Piecewise linear

 Rectifier Linear unit (ReLu), leaky ReLU

 It transmits the signal for positive values

 used  in modern deep neural network 

 Bad/good: its derivatives is 0 for negative inputs

 Bad/good: no upper bound
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Multilayer feedforward
neural networks (FNNs)
Multilayer perceptrons… also called back propagation 
networks… also called feedforward neural networks

 it is  one of the oldest network models 

 Neurons are disposed in layers: inputs, hiddens, outputs 

 The neurons of each layer take in input the outputs of 
the neurons of the previous layer

 No connection is allowed intra-layer and between non 
consecutive layers

input layer outout layer

Hidden layers
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Multilayer feedforward neural
networks (FNNs)

Mulilayer networks

 each neuron takes in input the output of other neurons

 a complex behaviour emerges from the simple activity of each neuron 

 The k-th neuron in the l-th layer has a bias bl
k and weights wl

(1,k),.., wl
(dl-1,k)

 its output yl
k is 

 The output yl of the l-th layer is

𝑦௞
௟ =  ෍ 𝑤(௜,௞)

௟ 𝑦௜
௟ିଵ + 𝑏௞

௟

ௗ೗షభ

௜ୀଵ

l-th layer

k-th neuron

𝑦௟ =  𝑊𝑙𝑦𝑙 − 1 + 𝑏𝑙 =  ෍ 𝑤௜
௟𝑦௜

௟ିଵ + 𝑏௞
௟

ௗ೗షభ

௜ୀଵ

Matrix form Vector form

Multilayer feedforward neural
networks (FNNs)

Multilayer networks

 each neuron takes in input the output of other neurons

 a complex behaviour emerges from the simple activity of each 
neuron 

 e.g., the output of the first layer is

 e.g., the output of the second layer is

 e.g., the output of the third layer is

𝑦ଶ =  𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2

𝑦ଵ =  𝑊1𝑥 + 𝑏1

𝑦ଷ = (𝑊3 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2 + 𝑏3)
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Interesting theoretical 
properties of NN
 Approximation capability

The capability of NN model of approximating a target 
function  

 Generalization capability
The capability of a trained NN to generalize to novel 
unseen patterns

 Optimal learning
The capability of training algorithm to produce the optimal 
patterns avoiding local minima

Approximation capability
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Practical question: 
approximation capability

 What type of applications can be implemented by a FNN?

 Are FNNs limited in some sense?

Answer (ver 1.0)

 FNNs are universal approximators, so that they can 
implement any application!

 Let us understand better the answer

 Let us understand the limits of such answer 

Approximation capability

 Given a target function t, a precision , a norm ||.||, is 
there a NN such that implements a function for which 

|𝑡 − 𝑓 | ≤ 𝜖

holds?

 The intuitive answer is almost always yes 
(By Cybenko; Hornik et alt.; Funahashi)

 True for most target functions t: 
continuous function, discontinues but measurable, ….

 True for most of the norms: 
sup norm, Euclidean norm, integral norms,  …

 True for most of the feedforward NN
with ridge and gaussian activation functions, 
sigmoidal, Relu, ….
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Approximation capability for 
continuous functions
Let 

 3 be the set of functions be implementable by a FNNs 
with activation function  and 3 layers (one hidden layer)

3 = 𝑓 𝑥 𝑓 𝑥 = 𝑊2 𝜎 𝑊1𝑥 + 𝑏ଵ + 𝑏ଶ

  be a sigmoidal activation function 

 C be the set of continuous function

 ||. ||ஶ be the sup norm, namely for two functions 
𝑓

ஶ
= max

௫
|𝑓 𝑥 |

Theorem 𝟑 is dense in C  i,.e.,for any , any 𝒕 ∈ 𝑪, there 
is a 𝒇 ∈ 𝟑 such that

𝒕 − 𝒇
ஶ

≤ 𝝐

Approximation capability: 
sketch of the proof

A sketch of the proof will help to better understand NNs

Focus on

 FNNs with one hidden layer

 a single outpiut

 linear activation functions in outputs 

 sigmoidal activation function inn hidden layer

Two step proof

 Approximation of functions on R  (single input)

 Extension to function on Rn

𝑦 = 𝑊2 𝑊1𝑥 + 𝑏1 + 𝑏2 = ෍ 𝑤௜
ଶ

௞

௜ୀଵ

 ෍ 𝑤௜,
ଵ𝑥 + 𝑏௟

௡

௝ୀଵ

+ 𝑏2

25

26



14

Sketch of the proof: 
single input functions

The main idea: four step proof

1. A single neuron implements sigmoid function 

2. A sigmoid can approximate a step function

3. Many step functions can approximate a staircase function

4. Staircase function can approximate any continuous function 

Sketch of the proof: 
single input functions

A neural network with one hidden neuron and increasing input-to-
hidden weight
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Sketch of the proof: 
single input functions

 A staircase function is made by many 
step functions 

 Staircases functions can approximate 
any continuous function.

 The precision of approximation 
improves increasing the number of 
steps
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Sketch of the proof: 
another approach

The main idea: two step proof

1. For any polynomial p, we can construct FNNs with analytic 
activation function that approximates p

2. Polynomials can approximate any continuous function
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Sketch of the proof: 
approximating polynomials

Analytic functions … let us remember what is

 A function is analytic if for each x0 its Taylor series converges to 
f in a neighborhood of x0

lim
௫→ 𝑆௫଴

𝑇(𝑥) = 𝑓(𝑥)

 Taylor series of a function f developed up to T terms computed 
in x0 with rest

𝑆𝑥0
𝑇 𝑥 = ෍   

𝑓 ௞ (𝑥0)

𝑘!

்

௞ୀ଴

(𝑥 − 𝑥0)௞  [+𝑅𝑇 𝑥 − 𝑥0 ]

Sketch of the proof: 
approximating polynomials

Analytic functions … useful intuitive facts

 Analytic functions looks like polynomials (their Taylor series)

 Actually, they looks like polynomials except for the error RT(x-
x0), which is smaller than O( (x-x0)T)

 𝜎 𝑥 = 𝜎 𝑥 − 𝑥0 +
௫ି௫଴ ఙᇲ(௫ି௫ )

ଵ!
+

௫ି௫଴ ଶఙᇲ(௫ି௫଴)

ଶ!
+

⋯ .
௫ି௫଴ ்

ି
ଵఙ ೅షభ ௫ି௫଴

்ିଵ !
+ 𝑅𝑇(𝑥 − 𝑥0)

 Thus, a neuron with an analytic activation function looks like a 
polynomial…

 … then, an FNN looks like a combination of polynomials
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Sketch of the proof: 
approximating polynomials

Go back to the original goal … 

 for any polynomial p(x)=c0+c1x+c2x2++...+crxr, construct FNNs 
with analytic activation function that approximates p

 an FNN looks like a combination of polynomials…

 the goal is easily reached, just find the right combination …

 Theorem. Suppose that  is analytic in a neighborhood of 
x0, then 𝐥𝐢𝐦𝟎

𝐩𝛂 𝐱 = 𝐩(𝐱), where

𝑝 𝑥 = lim଴
𝑝 𝑥 = lim଴

෍ ෍(−1)௞ା௟
𝑐𝑘

𝛼(𝑘)
𝑥0)

௥

௞ୀ௟

௥

௟ୀ଴

 𝑙𝑥 − 𝑥0

This is a FNN

r neurons

First layer
weight

Hidden biasSecond layer
weight

Sketch of the proof: 
approximating polynomials
 Theorem. A polynomial p(x)=c0+c1x+c2x2++...+crxr,

can be approximated (up to any precision) by a FNN 
with r neurons!

X2

A FNN with
2 neurons
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Sketch of the proof: 
functions with several inputs

How can we extend our results to functions with 
many inputs? 

 Let us start with a simple case: when the target 
function is a ridge function

Ridge functions

 A ridge function g:Rn->R, can be written as
𝑔 𝑥 = ℎ 𝑤𝑥

where h is a function of single input

 Ridge functions are constant on hyperplanes 
orthogonal to the ridge

 Ridge functions can be approximated by FNNs

The  direction of 
the ridge

Constant on
this hperplane

The ridge
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Sketch of the proof: 
functions with several inputs

How can we extend our results to the general 
case of functions with many inputs? 

 Just prove that

Theorem For any target function t:Rn->R and 
any , there exist ridge functions g1,..,gk, such
that 𝑡 − 𝑓 ≤ 𝜀 where

𝑓 𝑥 = ∑ 𝑔𝑖(𝑥)௞
௜ୀଵ

Solution 1: the Radon 
transform

 The Radon transform Rf of a function f allows to 
specify f in terms of their integrals over hyperplanes

 It is used in computed axial tomography (CAT 
scan), electron microscopy, …  

 The inverse Radon transform is

f 𝑥 = ∫ 𝑅𝑓(𝑤𝑥, 𝑤)
௪ ୀଵ

dw 

Intuitively, it is the integral
of f over the hyperlane
orthogonal to w and passing 
through x

Sum over all the hyperplanes
to compute f(x)
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Solution 1: the Radon 
transform

 The inverse Radon transform  contains an integral, 
which can ne approximated by finite sum

f 𝑥 = ∫ 𝑅𝑓 𝑤𝑥, 𝑤 𝑑𝑤 ≈
௩ ୀଵ

∑ 𝑅𝑓(𝑤𝑖𝑥, 𝑤𝑖)𝑑𝑤𝑖௞
௜ୀଵ

 The result is a sum of ridge functions!!
This is a 
ridge
function

Solution 2: combination of 
polynomials

How can we extend our results to functions with many 
inputs? 

 Restrict your attention to polynomials and prove that

Theorem For any target polynomial t:Rn->R, there
exist ridge polynomial g1,..,gk, such that

𝑡 𝑥 = ∑ 𝑔𝑖(𝑥)௞
௜ୀଵ
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Solution 2: combination of 
polynomials

 Notice that the space of polynomials is related to the linear space 
of its parameters

 A generic polynomial with 3 variables and degree 3

𝑝 𝑥1,
𝑥2, 𝑥3 = 𝛼1𝑥ଵ

ଷ + 𝛼2𝑥ଵ
ଶ 𝑥ଶ

ଵ + 𝛼3𝑥ଵ
ଶ𝑥ଷ

ଵ + 𝛼4𝑥ଵ
ଵ 𝑥ଶ

ଵ 𝑥ଷ
ଵ + ⋯

 Its representation as a vector in linear space
[𝛼1, 𝛼2, 𝛼3, 𝛼4, … ]

 The dimension of the space of polynomials with n variables and 
degree r is

𝑁 =
𝑟 + 𝑛 − 1

𝑛 − 1

Solution 2: combination of 
polynomials

It has been proved that 

 a set of ridge polynomials in the form of

𝑤1𝑥 + 𝑏1
𝑟 ,

𝑤2𝑥 + 𝑏2
𝑟, 𝑤2𝑥 + 𝑏2

𝑟,….

for random vi, bi are, in most of the cases, linearly independent!!

 With  𝑟 + 𝑛 − 1
𝑛 − 1

random ridge polynomials you can, in most of 

the cases, generate the full space of polynomials of n variables 
and degree r!!
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Other solutions

 Other solutions exist, e.g. based on Fourier transform, …

Possible extensions

Universal approximation

 Activation functions 

 tanh, arctan, ReLU,   step, any analytic function, any step 
function

 Not enough: polynomials
• Used alone, they can implement only other polynomials

 Error norm

 Sup, L1, L2, … sobolev,…

 Architecture

 Any number of inputs and outputs

 At least one hidden layer is required!
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Back to practice

 In general, the FNNs described by the mentioned results 
on approximation theory are not encountered in practical 
experiments

 learning algorithm often produce FNNs without an 
intuitive explanation

 But in particular cases, the consequences of  
approximation theory are evident also in practice.

Back to practice: often seen in 
experiments with three layer
networks

About weight dimension approximating staircase

 approximation by sigmoids is reached by large weights in first 
layer and small weights in the second layer

 large weights produce saturation in sigmoids and make 
learning difficult

 ReLUs do not have saturations, but very large weights may
produce large gradients

 In practical experiments, 

 such a difficulty is encountered, when the target function 
looks likes a staircase, e.g. it is discontinuous somewhere

 In this case learning is difficult
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Back to practice: often seen 
in experiments with three 
layer networks
About weight dimension, approximating polynomials

 With sigmoids approximation is reached by small weights 
in first layer and large weights in the second layer

 such a configuration makes the network sensitive to 
weight noise and  makes learning difficult

 In practical experiments,

 such a difficulty is encountered, when the target 
function is a polynomial and the activation function is 
a polynomial!!

𝑝 𝑥 = lim଴
𝑝 𝑥 = lim଴

෍ ෍(−1)௞ା௟
𝑐𝑘

𝛼𝑘
(𝑘)

𝑥0)

௥

௞ୀ௟

௥

௟ୀ଴

 𝑙𝑥 + 𝑥0

Back to practice: weight 
dimension

Notice that 

 in several applications the target function is almost polynomial 
(e.g., in dynamic system identification) 

 common tricks to alleviate the problem 

 add input to output weights

 use neural network in parallel with a polynomial approximation

 ReLU does not suffers from the problem with polynomials: this a 
good new for the modern architectures that tend to use ReLUs!!

 Notice however that if the polynomial to be approximated is 
very high order then also ReLUs are not a good solution may 
still suffer from large weights !!!

 Modern architectures and learning algorithms use a number of
tricks that alleviate/control/change the effect of weight dimension 
so that the mentioned problem may be change consequently: eg
weigh decay,  batch normalization, …
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Back to practice: ridge 
direction
What about the directions (not dimension) of ridges  𝑤ଵ

ଵ,…, 𝑤௡
ଵ?

𝑦 = ෍ 𝑤௜
ଶ

௞

௜ୀଵ

 ෍ 𝑤௜
ଵ𝑥 + 𝑏௟

௡

௝ୀଵ

+ 𝑏2

Back to practice: ridge 
direction

 The results from Radon transform  tell us that the directions and 
the biases can be chosen by a grid on the ball |w|=1

 When combined with a selection of the biases from a grid, the 
hyperplanes wix=bi constitutes a partition of input domain !

hyperplanes
wix=bi

Directions of the ridges
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Back to practice: ridge 
direction

 The results from polynomial combination suggest that ridges and 
the biases (the partition) can be even random!

A constructive algorithm from 
theory
A simple algorithm (old work by me and Tsoi)

1. Chose the first hidden layer weights and biases from a in a 
random way (or uniformly from a grid)

2. Make  the first hidden layer weights very small (or very large)

3. Adapt only the send layer weights and bias to minimize the 
error function

Notice that

 this algorithm does not suffer from local minima!!!!

(the error is quadratic w.r.t the last layer parameters)

 It works also for many outputs
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The error is quadratic w.r.t 
the last layer parameters

Let us look at a FNN formulas using matrices 

The dataset

 {(x1,t1), … (xk,tk)}      a set of patterns

 𝑋 = 𝑥1, . . 𝑥𝑘
   

Set of  Inputs in matrix form

 𝑇 = [𝑡1, . . 𝑡𝑘] Set of targets in matrix form

The network output Y

 𝐻 =  𝑊1𝑋 + 𝑏1 
𝟏 Matrix of hidden

 𝑌 = 𝑊2𝐻 + 𝑏2𝟏 Matrix of outputs

where
𝟏 = 1 …

.
1

W1,W2, are the input to hidden weight matric and the hidden to output 
weight matrix, respectively 

The error is quadratic w.r.t 
the last layer parameters

Let us look at a FNN using using matrixes 

The error

 𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑌 2

It is quadratic

𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑌 2

= 𝑣𝑒𝑐 𝑇 − 𝑊2𝐻 + 𝑏2𝟏 2

= 𝑣𝑒𝑐 𝑇 − 𝑣𝑒𝑐 𝑊2𝐻 + 𝑏2𝟏 2

= 𝑣𝑒𝑐 𝑇  − 𝑯ᇱ𝑰𝒓 𝒗𝒆𝒄 𝑊2 − 𝟏ᇱ𝑰𝒓 
𝑏2 2

= 𝑣𝑒𝑐 𝑇  − [𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓 
] [𝒗𝒆𝒄 𝑊2 ,

, 𝑏2] 2

Vec transforms a 
matrix into a vector

Kroneker
product

Vector-matrix
product

Identity 
matrix

Compatibility between
Kronecker product and vec

𝑣𝑒𝑐 𝐴𝐵𝐶 = 𝐶ᇱ𝐴 𝑣𝑒𝑐 𝐵
𝑣𝑒𝑐 𝐵𝐶 = 𝐶ᇱ𝐼 𝑣𝑒𝑐 𝐵

Vector of the 
paramters
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Constructing the network: 
ELM and fixed basis functions
Extreme learning machines (ELM) (Huang)

1. In ELM only the last layer weights and bias are trained

2. the second layer weights are computed by the pseudoinverse 

Claimed advantages

 very fast to train

 approximation property is conserved

 good generalization ? (we will discuss this later)

In general, this is called approximation by fixed basis functions

 Polynomial

 Gaussian functions

 Support vector machine

 … 

Constructing the network: ELM 
and fixed basis functions
So, why should we use FNN instead of ELM?

 Approximation by FNNs require a smaller number of neurons!

 We have to discuss about resource usage, not only about  
universal approximation!
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Back to the initial practical
question

 What type of applications can be implemented by a FNN?

Answer (ver 1.0)

 Almost all common FNNs are universal approximators: they can 
implement any application!

Advanced question

 Does this mean that all the FNNs are equivalent?

Answer (ver 2.0)

 No, the precision of the approximation depends on the FNN 
architecture, the number of neurons/parameters ….

Going beyond universal 
approximation

The approximation precision depends on

 the complexity of the model

 the  measure of the approximation

 the complexity of the function to be approximated

The idea

 fix a set of functions having a given complexity

 fix a measure of approximation 

 study how the approximation quality changes with the number 
of neurons 
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Going beyond universal 
approximation

Barron proved that

 Let t be the target function, T is its Fourier transform and 

𝐶𝑡 = න 𝑣 𝑇 𝑣 𝑑𝑣
ோ௡

 There is a FNN fk with sigmoidal activation function and k 
hiddens

න 𝑡 − 𝑓𝑘
஻௥

2 ≤
2𝑟𝐶𝑡 2

𝑘

Thus,

 The square error decreases linearly with the number of hiddens

How much t is complex

Linear convergence of error
with the number of neurons

Constructing the network

 There is a FNN fk with sigmoidal activation function and k 
hiddens

න 𝑡 − 𝑓𝑘
஻௥

2 ≤
2𝑟𝐶𝑡 2

𝑘

Such a bound can be achieved by this procedure which iteratively 
adds a neuron at each step

1. Set f0 (x) equal to the constant 0 function

2. Set fi (x)= fi-1(x) +  (wx+b)

 Optimize  ,,w,b
(the error must be decrease for a given amount O(1/i))

3. Repeat 2 until the desired error is achieved
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FNNs vs basis functions

Barron 1993 proved also that

 For every choice of basis function h1,..,hk,, S being the set of 
functions spanned by h1,..,hk  and Tc being the set of functions 
whose complexity is smaller than C, we have

sup
௧∈்௖

min
௙௞∈ ௌ

න 𝑡 − 𝑓𝑘
଴,ଵ ௡

≥ 
𝐶

𝑛  𝑘
೙

where  is an universal constant

Thus,

 There are target functions for which approximation by ELM, 
polynomials, … is much worse than approximation by FNN!

 It is O(1/k) in FNN wrt O(1/ 𝑘
೙ ) 

 When the input space is large, the difference is huge

Sublinear convegence

FNNs vs ELMs: an intuitive 
explanation

Back to the ridge grid concept

 When the first layer parameters are random, the hyperplanes 
wix=bi forms a sort of random grid

 But, when those neurons are really useful? 

 If the target function t is a ridge, only neurons having the 
direction of the ridge are useful

 If the target function t is constant in a region, the neurons 
changing in such a region are not useful 

Neurons useufl
to approximate a 
ridge function
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The complexity of different 
classes of functions

Back to Barron result

 There is a FNN fk with sigmoidal activation function and k 
hiddens

න 𝑡 − 𝑓𝑘
஻௥

2 ≤
2𝑟𝐶𝑡 2

𝑘

 How large is Ct in practice?

How much t is complex

The complexity of different 
classes of functions

Barron proved that

 Ridge functions, t(x)=h(wx),  

𝐶𝑡 ≤ 𝑤 ℎ′(0)

The complexity does not depend on number of inputs!

 Radial basis functions, t(x)=h(|x|), 

𝐶𝑡 ≤ 𝑛ଵ/ଶ

It depends on input dimension  

 For polynomial, Barron proved that 𝐶𝑡 depends only on the 
coefficients.

But  it is even better, a finite number of sigmoidal neurons are 
required for any degree of approximation
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The complexity of combined 
functions

Barron proved that

 Translation, t(x)=h(x+b) 

𝐶𝑡 = 𝐶ℎ

Translation does not affect complexity

 Linear combination, 𝑡 𝑥 = ∑ 𝑖ℎ𝑖(𝑥)௞
௜ୀଵ

𝐶𝑡 = ෍𝑖𝐶𝑖

௞

௜ୀଵ

The complexity of combined 
functions

Barron proved that

 Product, t(x)=h(x)*g(x)

𝐷𝑡 = 𝐷ℎ 𝐷𝑔

𝐶𝑡 = 𝐷ℎ 𝐶𝑘 + 𝐷𝑘 𝐶ℎ

 where

𝐶𝑡 = න 𝑣 𝑇 𝑣 𝑑𝑣
ோ௡

      𝐷𝑡 = න 𝑇 𝑣 𝑑𝑣
ோ௡

(T is the Fourier transform of t) 
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Which are the complex 
functions?

A doubt

 For all the above classes functions (except for gaussian), the 
error decreases linearly with number of hidden units

 Even if the combined function are simple

 Which are the functions which requires a lot of hiddens?

Intuitive answer

 Complex functions cannot be defined from simple functions in 
few steps!!!

 Several products, sums … are required

 Or several compositions t(x)=F(h(x)))   are required!!!

 Back on this later

 this is about deep learning !!!!

Final pratical remarks about
approximation capability
Properties

 most of the common models are universal approximators

 but different architectures have different properties!!

In practice

 The suggestion is the most obvious, the best architecture 
depends on the problem 
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Learning capability

Practical question: learning
capability

Now, we know what a FNN can approximate any 
function, but what about what a FNN can learn? 
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Learning in neural networks

Optimization of error function ver 1.0

 by gradient descent

 update the parameters according to

𝑤 𝑡 + 1 = 𝑤 𝑡 − 
𝜕𝑒𝑤

𝜕𝑤

until a desired minimal error is obtained

Learning in neural networks

Gradient descent
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Learning in neural networks

Gradient computation

 by an algorithm called backpropagation

 linear time w.r.t. the number of neurons

 not a matter of this course

Optimization of error function 

 Several variants of gradient descent exist: momentun, 
batch, …

 Several other optimization algorithms exist: adam, resilient 
backpropagation, conjugate gradient, Newton,  … 

 Not matter of this course

An old experiment

The idea (Lawrence et al.)

 construct a random network N1 with k1 hiddens

 generate a random domain and use N1 to generate the 
targets

 train another network N2 with k2 hiddens

 When k2>=k1, the best minina has cost 0! 
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An old experiment
Results

 target network k1=10

 5 inputs,5 output

 100 patterns train set

 Experiments repeated several times

Train set

An old experiment
Results

 target network k1=10

 5 inputs,5 output

 100 patterns train set

 Experiments repeated several times

Test set
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An old experiment

Conclusions

 Training often does not produce the optimum 

 Training is a challenge

 The error improves increasing the number of hidden units

 The more the parameters, the better the 
approximation

 The error on test set may increase even it increases on 
train set

 Generalization is a challenge

Practical question: learning
capability

Why does training fail

Answer (ver 1.0): local minima

 learning capability depends on the 
presence/absence of local minima in error function

 Theoretical results on this are few and incomplete 
… let us review some of them for three layer
networks

 Later we will discuss about deep architectures 
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Absence of local minina
There is no local minimum if

 Network 

 a single neuron (with sign activation)

 Patterns

 Linearly separable patterns

 Proof: look at the separation surface and how it can be moved

+

+

++
+

-

-

-

--
sign

w1
1

w2

Separation
surface

Ridge 
direction

Absence of local minina

Extension to FNNs (Gori et al.)

 Network

 one hidden layer

 sigmoidal outputs, one hot coding of C classes

 hidden to output weights are separated for each class 

 Patterns

 Linearly separable

input layer output layer

+
++

+

-
-

- *
*

*
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Absence of local minina

(At least) so many neurons as patterns (Yu et alt.)

 Network

 One hidden layer with n neurons

 Linear outputs

 Patterns

 n-1 distinct pattern

So many neurons as
patterns

Proof… the idea
Remember that

𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑌 2= 𝑣𝑒𝑐 𝑇  − [𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓 
] [𝒗𝒆𝒄 𝑊2 ,

, 𝑏2] 2

= 𝑣𝑒𝑐 𝑇 − 𝑅𝑝2
2

p2= [𝒗𝒆𝒄 𝑊2 ,
, 𝑏2]

R=[𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓 
], 

 with neurons and n−1 patterns R 𝑖𝑠 a square matrix

 if R is full rank, than the linear system has a solution!

0=vect(T)-Rp2

 The trainset can be perfectly learned (error =0)!  
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So many neurons as
patterns

Proof… the idea
Remember that

𝑒 = 𝑣𝑒𝑐 𝑇 − 𝑅𝑝2
2

p2= [𝒗𝒆𝒄 𝑊2 ,
, 𝑏2]

R=[𝑯ᇱ𝑰𝒓 , 𝟏ᇱ𝑰𝒓 
], 

 The gradient is
𝜕𝑒

𝜕𝑝2

= 2 𝑣𝑒𝑐 𝑇 − 𝑅𝑝2
ᇱ𝑅

 If R is full rank, than the gradient is 0 only when the error is 0!

The rest of the proof (skipped)

 When R is not full rank (very rare case in practice), then equilibrium 
points correspond unstable points

Absence of local minina

Linear networks (Baldi)

 Network

 One hidden layer

 Linear outputs

 Patterns

 Any set of patterns

 The result

 The error surface show a global minima and several 
saddle points but no local minima
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Presence of local minima

Many minima for a perceptron (Auer 1996)

 Network

 A single perceptron

 Sigmonidal activation function

 Patterns

 K patterns, ad hoc displacing

 Number of local minima

 At least k

Presence of local minima
A sketch of the proof for a single input perceptron

 Only the patterns where the neurons are not saturated affects 
the derivative of the error

 The following figure shows a local minima, as we can only 
improve the errors on the circled patterns 

 The figure show a sigmoid,

-- - - -- --

+ ++++

-

++++

Error decreases
if saturation increases
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Presence of local minima

A sketch of the proof for a single input perceptron

 There are many minima

+ ++++

-- - - - -

+

-

+++

--

Presence of local minina

Extended XOR (Bianchini)

 Network

 One hidden layer with 2 neurons

 Sigmonidal output activation function

 Patterns

 5 patterns x1 x2 target

0 0 0

0 1 1

1 0 1

1 1 0

0.5 0.5 0
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Presence of local minina

Extended XOR (Bianchini 96)

+

- +

-

-
Optimum

Local 
mimum

Moving the 
separation surface 
Increases the error

Practical question: learning
capability

Why does training fail?

 Does really training fail for local minima? 

We may have disregarded the role of 

 attracting regions

 flat regions (and saddle points)

 regions with deep valley
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Attracting regions

Attracting regions (local minima to infinity)

 The error decrease on a path which makes weights larger 
and larger

 The minima, if it exists, it is at infinity: it can be both a global 
minimum or a sub-minimum

Why learning is difficult

 Large weights may produce numerical problems 

 Large weights may produce large oscillations during learning

 Lager weights produce saturations in networks with sigmoids
(and flat error surface)

Attracting regions

Networks with only ReLU activations 

 Some attracting regions may due to the approximation of 
discontinuous or unbounded functions (recall approximation 
by step functions)

 Other may due to soft max loss 

 …. 

Networks with sigmoidal activation

 They may have a large number of attracting regions, due to 
the saturation of the sigmoid when the weights are large

 If output neurons use sigmoids and the error function is MSE

 a perfect learning of the train set requires for infinitive 
weights!
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Flat regions (and saddle
points) 
An example of  an error surface

Flat regions (and saddle
points) 
Why learning is difficult

 No ways to distinguish between saddle points, flat surface 
and minima

 Very slow convergence rate

 Numerical errors

In both networks with sigmoids and ReLU

 In sigmoids flat surfaces are due to saturations

 In ReLU, flat surfaces are due to the constant part ot ReLU

 Some approaches use
• Leaky ReLU (x)=x if x>0, (x)=ax otherwise,   with 0<a<1

• Exponential linear unit (ELU) 
(x)=x if x>0, (x)=a(e-x-1) otherwise,   with a>0

• ….
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Regions with deep valleys

Condition number for a matrix A

 The ratio between the largest and the minimum 
eigenvalue

 k(A) =max(A)/ min(A)

An error function ew having Hessian matrix 2ew with a large 
condition number 

 the error function has a deep valley

 optimization is difficult when k(2ew ) is large 

 Explanation 1.0

Gradient descent follows a zig-zag path!!

Regions with deep valleys
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Regions with deep valleys

Regions with deep valleys: 
a theoretical viewpoint

Remember gradient descent

 ew (t) error function at iteration t w.r.t. weights w(t)

  learning rate 𝑒𝑤(𝑡) gradient

𝑤 𝑡 + 1 = 𝑤 𝑡 − 𝑒𝑤(𝑡)

 Gradient descent converges if 𝑒𝑤 is convex (or if it starts 
in an attraction basin)  

 Let us assume an optimal  is chosen
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Regions with deep valleys: 
a theoretical viewpoint

It can be proved

 Let w* be the optimal weights and 2e the Hessian matrix in w*

𝑤
∗

−𝑤 𝑡 ≤
𝑘 𝛻2𝑒 − 1

𝑘 𝛻2𝑒 + 1
𝑤

∗
−𝑤(𝑡 − 1)

 Thus, the converge rate for error  is 

𝑂
௞ ఇଶ௘ ିଵ

௞ ఇଶ௘ ାଵ
/log (𝜀)

Regions with deep valleys: 
a theoretical viewpoint

 In a general case, the function may not be strongly convex 
(some eigenvalue is 0)

 In this case, condition number of Hessian may be infinitive

 Let ew .satisfies the following (L - Lipschitz continuous gradient 
function, L-lcg function)

𝛻𝑒𝑤1 −
𝛻𝑒𝑤2 ≤ 𝐿 𝑤1 − 𝑤2

It can be proved

 Basic gradient descent is   𝑂 𝐿/𝜀

 Newton is 𝑂 𝐿/𝜀

99

100



51

Regions with deep valleys: 
a theoretical viewpoint

A lower bound

 For any , there exists an L-lcg. function f , such that any first-
order method takes at least

𝑂 𝐿/𝜀

steps

Intuitive message 1

 Learning may be difficult  even if the error function 
has only a minimum: the minimum may be at the 
bottom of a (badly conditioned) deep valley!!
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Intuitive message 2

 Learning may bed difficult  even if the error function 
has only a minimum!!

Learning capability: 
a negative result

Loading problem (decision version)

 Given a neural network architecture and a set of training 
examples, does there exist a set of edge weights for the 
network so that the network produces the correct output for all 
the examples ?

It has been proven that the following Judd

 Loading problem  is NP-complete!!

The theorem holds for 

 binary functions

 network with  threshold activation functions
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Learning capability: 
a negative result

Extensions proven by Judd

 only two layers

 fan-in smaller or equal 3

 Only 67%  are required to be correct

 …

Final remarks about learning
capabibility
In practice

 even if a model can approximate a target function, such a 
model may not  be easy to learn

 learning capability depends 

 on the problem (train set)

 the adopted model 

 A general rule works in practice!!!

 the smallest the data, the simplest the learning

 the larger the model, the simplest the learning
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Other aspects we have not 
considered

Information contained in  features

 Noise and lack of information may prevent perfect 
loading

 It is difficult to know whether your learning 
algorithm works

 When the information in feature is very few, you 
may want to adopt transductive learning methods

Error function adopted for learning

 Training error function is often different from test 
error function

 You may want to try different train error function

Other aspects we have not 
considered

Patterns are trained independently

 Good precision does not ensure that derivatives are 
approximated

 Relationships between patterns are not ensured

 There are machine learning methods suitable for 
this case
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