

Il modello relazionale

Codd, 1970

- Adottato dalla maggior parte dei DBMS in commercio
- Definisce come sono organizzati i dati e non come sono poi memorizzati e gestiti dal sistema informatico

Relazione - Tabella

Il concetto di relazione proviene dalla matematica mentre quello di tabella è intuitivo

Il modello relazionale permette di trattare i dati ad un livello logico senza preoccuparsi del livello fisico ovvero di come i dati sono effettivamente elaborati e memorizzati. Per accedere ai dati non è necessario conoscere le strutture fisiche con cui sono realizzati!

1

Implicazioni

Struttura

I dati sono visti come tabelle

Integrità

Le tabelle soddisfano dei vincoli di integrità

Manipolazione

Gli operatori a disposizione per manipolare la tabelle (relazioni) sono operatori che derivano tabelle (relazioni) da tabelle (relazioni)

Prodotto cartesiano

 Consideriamo l'insieme dei Nomi e dei numeri di telefono dei dipendenti

	2345
Mario Rossi	2367
Luca Verdi	2378
Anna Bianchi	2356
D_1	D_2

 \mathbb{H} Il prodotto cartesiano $D_1 \times D_2$ è l'insieme di tutte le coppie ordinate (NOME, TELEFONO)

3

Prodotto cartesiano 2

Mario Rossi	2345
Mario Rossi	2367
Mario Rossi	2378
Mario Rossi	2356
Luca Verdi	2345
Luca Verdi	2367
Luca Verdi	2378
Luca Verdi	2356
Anna Bianchi	2345
Anna Bianchi	2367
Anna Bianchi	2378
Anna Bianchi	2356

- Il prodotto cartesiano contiene tutte le possibili associazioni fra gli elementi degli insiemi
- La rubrica dei numeri telefonici contiene solo alcune di tutte le possibili coppie

- Una relazione matematica sugli insiemi D₁ e D₂ (domini) è un sottoinsieme del prodotto cartesiano D₁ x D₂
- Le relazioni si possono visualizzare efficacemente con una tabella in cui ogni colonna corrisponde ad un dominio e ogni riga a un elemento della relazione

La relazione RUBRICA

Mario Rossi	2345
Luca Verdi	2367
Luca Verdi	2378
Anna Bianchi	2356

La rubrica contiene solo le coppie (NOME, TELEFONO) che esistono

5

Definizione generale

- Si possono considerare n domini non necessariamente distinti $D_1, D_2, ..., D_n$
- Il prodotto cartesiano D₁ xD₂ x...xD_n contiene tutte le possibile n-uple (v₁,v₂,..., v_n) dove v_iè uno dei possibili valori presenti nel dominio D_i
- Una relazione R sui domini $D_1, D_2, ..., D_n$ è un sottoinsieme del prodotto cartesiano $R \subseteq D_1 \times D_2 \times ... \times D_n$
- Il numero delle componenti del prodotto (n) è detto grado della relazione; il numero di n-uple della relazione è la cardinalità della relazione.

Un dominio può avere dimensione infinita (es. $D_i = N$). In tal caso il prodotto cartesiano è infinito, mentre possono essere definite relazioni finite.

 D_1 = Squadre di Serie A D_2 = Squadre di Serie A

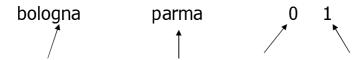
 $D_3 = Numero$ $D_4 = Numero$

Relazione

Risultati delle partite della II giornata del campionato

Lazio	Inter	1	1
Fiorentina	Roma	3	1
Milan	Bari	0	0
Bologna	Parma	0	1
Udinese	Napoli	2	1
Lecce	Perugia	1	1
Reggina	Juventus	3	0
Atalanta	Brescia	2	2
Verona	V icenza	0	0

7


Proprietà delle relazioni

- una relazione matematica è un insieme di n-uple ordinate (d₁, ..., dn) tali che d₁∈ D₁, ..., dn ∈ Dn
- una relazione è un insieme, quindi:
 - non c'è ordinamento fra le n-uple
 - le n-uple sono distinte
 - ciascuna n-upla è ordinata
 l' i-esimo valore proviene dall' i-esimo dominio
- ciascuno dei domini ha un ruolo diverso, dipendente dalla posizione (struttura posizionale)

Relazioni con attributi

- Ogni n-upla della relazione stabilisce un legame fra i dati (definisce l'esistenza di un fatto)
- Il significato dei valori dipende dall'ordine con cui sono elencati nell'n-upla

SquadraDiCasa SquadraOspite RetiCasa RetiOspitata

- Si può associare un nome alle componenti della n-upla
- I nomi associati ai domini si dicono attributi e descrivono il ruolo che il dominio rappresenta nella relazione

9

Record e campi

- Ciascuna *n*-upla della relazione può essere vista come un record, ovvero una relazione è sostanzialmente un insieme di record omogenei
- Gli attributi definiscono la struttura del record ovvero i suoi campi
- Si può accedere al valore di un attributo di un record usando il nome del campo

Si usa il nome tupla per indicare una riga di *n* valori corrispondenti ad attributi

Attributi e tuple

 Se X è un insieme di attributi e D un insieme di domini, si stabilisce una corrispondenza fra attributi e domini con una funzione

DOM: $X \rightarrow D$

che associa a ciascun attributo $A \in X$ un dominio $DOM(A) \in D$

- La funzione DOM corrisponde alla definizione del tipo dati di ogni attributo
- Una tupla su un insieme di attributi X è una funzione t che associa a ciascun attributo A ∈ X un valore in DOM(A)

11

Domini e tipi di dato

- Un dominio è praticamente un tipo di dato
- La definizione di un dominio comprende
 - L'insieme di tutti i valori possibili che può assumere un elemento del dominio (e quindi i valori ammessi per l'attributo)
 - Gli operatori che possono essere applicati ai valori di quel dominio

Dominio: N (INTEGER)

Operatori: comparazione (=,>,<), aritmetici (+,-,*,/)

 Non è necessariamente legata alla rappresentazione fisica dei dati

Data una tupla posso estrarne il valore degli attributi

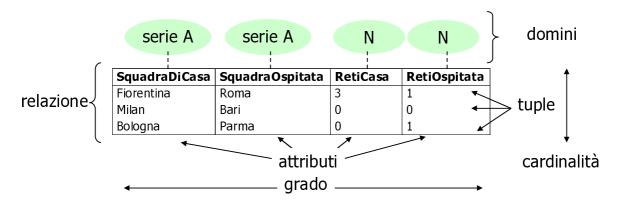
SquadraDiCasa	SquadraOspitata	RetiCasa	RetiOspitata
Fiorentina	Roma	3	1

t[SquadraOspitata] = Roma

t[**SquadraDiCasa**] = Fiorentina

Si possono estrarre anche insiemi di attributi ottenendo tuple

t[SquadraDiCasa,SquadraOspitata]=


SquadraDiCasa	SquadraOspitata
Fiorentina	Roma

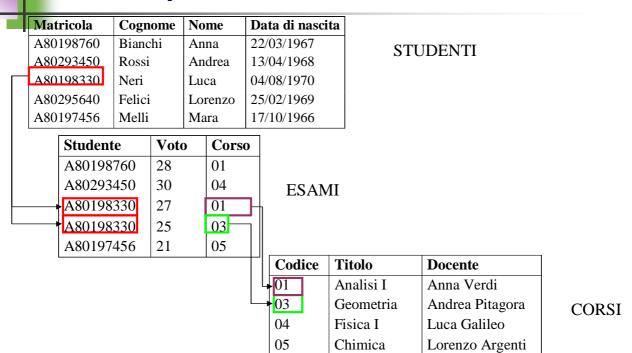
13

tuple e relazioni

- Una relazione su X è un insieme di tuple su X
- Si usa la definizione di tupla al posto di n-upla
 - in una n-upla gli elementi sono individuati per posizione
 - In una tupla gli elementi sono individuati per attributi

Tabelle e relazioni

- Una tabella rappresenta una relazione se
 - i valori di ogni colonna sono fra loro omogenei
 - le righe sono diverse fra loro
 - le intestazioni delle colonne sono diverse tra loro
- In una tabella che rappresenta una relazione
 - l'ordinamento tra le righe è irrilevante
 - l'ordinamento tra le colonne è irrilevante


15

Relazioni e basi di dati

- Una base di dati è in genere costituita da più relazioni
- Si possono creare corrispondenze fra le tuple di relazioni distinte
- Si ottengono corrispondenze fra tuple di relazioni diverse aventi gli stessi valori su un insieme assegnato di attributi
- Il modello relazionale è basato su valori
 - indipendenza dalle strutture fisiche
 - si rappresenta solo ciò che è rilevante
 - l'utente finale vede gli stessi dati dei programmatori
 - i dati sono portabili più facilmente da un sistema ad un altro
 - i puntatori sono direzionali

Corrispondenze fra relazioni

17

Schemi per basi di dati

• Uno schema di relazione è costituito dal nome della relazione e da un insieme di attributi $X = \{A_1, A_2, ..., A_n\}$

STUDENTI(Matricola, Cognome, Nome, Data di Nascita)

• Uno schema di base di dati è un insieme di schemi di relazioni con nomi diversi:

$$\mathbf{R} = \{R_1(X_1), R_2(X_2), ..., R_m(X_m)\}$$

Istanze di basi di dati

- Una istanza di relazione su uno schema R(X) è un insieme di r tuple su X
- Un'istanza di base di dati su uno schema

$$\mathbf{R} = \{R_1(X_1), R_2(X_2), ..., R_m(X_m)\}$$

è un insieme di relazioni

$$\mathbf{r} = \{r_1, r_2,, r_n\},$$

dove ogni r_i , per $1 \le i \le n$, è una relazione dello schema $R_i(X_i)$

19

Archivio forniture

	Codice	Descrizione	Magazzino	Costo
	A0001	Chiodi 35mm	234000	15
	A0004	Viti 12mm	102400	25
I	P0010	Pinza	200	7000
İ	P0230	Cacciavite	600	3500

PRODOTTI

Art	ticolo	Quantita	Data	Cliente
A0	001	3000	25/06/2000	0034
- A 0	004	500	25/06/2000	0034
P00	010	3	12/07/2000	0001
P02	230	2	13/07/2000	0101
-\A0	004	100	15/07/2000	0034

FORNITURE

	Codice	Nome	Indirizzo	PIVA
	0001	Carlo Berti	Via Roma 6	02332002
-	0034	BCD Spa	Via Verdi 4	04554303
	0101	A&G Srl	Viale Morgagni 16	10920393
	0076	Luca Nelli	Piazza Bixio 5	08832822

20

Relazioni con un solo attributo

- Sono ammesse relazioni con un solo attributo
- Può essere utilizzata per selezionare un sottoinsieme delle tuple di un'altra relazione, se contiene valori che appaiono come valori di un attributo dell'altra relazione
 - Se gli elementi del sottoinsieme sono pochi rispetto al totale può essere più efficiente questa soluzione piuttosto che utilizzare un attributo booleano nella relazione

	Matricola	Cognome	Nome	Data di nascita
Matricola	 A80198760	Bianchi	Anna	22/03/1967
A80198760 -	A80293450	Rossi	Andrea	13/04/1968
A80198330 -	 A80198330	Neri	Luca	04/08/1970
	A80295640	Felici	Lorenzo	25/02/1969
Lavoratori	A80197456	Melli	Mara	17/10/1966

Studenti

21

Strutture nidificate

 Rappresentare col modello relazionale un archivio di fatture emesse in seguito ad una fornitura di materiale

Fat	tura n. 1234 del 1/:	10/2001
Α:	Dipartimento di Inge	gneria
PI:	00874567434	
2	Computer portatile	5000
3	Mouse PS/2	20
1	IBM DB2 personal	100
2	schede SCSI	150
	Totale	5270

Relazioni per strutture nidificate

			Cod	Nom	е		Indirizzo	PIVA	
	Г		0001	Dipar	tim ento	di Ingegneria	Via Roma!	56 00874	567434
			0034	BCD S	Spa		Via Verdi 4	045543	03874
atture				•				-1:	. •
Numero	Data	Client	e T	otale				client	.1
1234	01/10/2001	0001		5270					
1235	02/10/2001	0101		10					
1236	02/10/2001	0034		230					
		Fatt	ura	Quan	tita	descrizione		Prezzo	
		Fatt 1234		Quan	tita 2			Prezzo 5000	
				Quan		Computer p	ortatile		
		1234		Quan	2	Computer p	ortatile	5000	
		1234 1234		Quan	2	Computer p Mouse PS/2 IBM DB2 p	ortatile ersonal	5000 20	
		1234 1234 1234		Quan	2 3 1	Computer p Mouse PS/2 IBM DB2 p	ortatile ersonal	5000 20 100	
	dettaglio	1234 1234 1234 1234		Quan	2 3 1	Computer p Mouse PS/2 IBM DB2 p Scheda SCS	ortatile ersonal	5000 20 100 150	

Strutture nidificate: note

- La base di dati precedente rappresenta correttamente le fatture purché:
 - Non ci siano righe ripetute in una stessa fattura (le tuple devono essere uniche)
 - Non conti l'ordine con cui devono essere riportate le righe nella fattura
- Si può arricchire la rappresentazione in modo che sia rappresentato l'ordine del dettaglio
 - Si aggiunge l'attributo Riga alla relazione Dettaglio
- Il campo Totale della relazione Fatture è un attributo ridondante (potrebbe essere calcolato?)

Informazione incompleta

- Può accadere che il valore di un attributo non sia disponibile per tutte le tuple
- Non è corretto usare un valore del dominio non utilizzato (es. 0, "99", stringa vuota), per rappresentare l'assenza dell'informazione
 - Non è detto che esista un valore del dominio che non sia mai usato come valore valido (es. se l'attributo è una data)
 - L'uso dei valori del dominio può generare confusione: quando si accede ai dati si deve aver chiaro quali sono i valori veri e quelli fittizi
- Si deve estendere il concetto di relazione....

25

Il valore nullo

- Si introduce un valore nullo (NULL) che denota l'assenza di informazione sul valore di un attributo per una data tupla
- Il valore di un attributo A può appartenere a DOM(A) o essere NULL
- Il valore di un attributo può mancare perché
 - è sconosciuto
 - è realmente inesistente (l'attributo non è applicabile ad una data tupla)
 - è senza informazione (non si sa se esiste o meno)

				inesistente
Codice	Nome	Indirizzo	PIVA	mesistente
0001	Carlo Berti	Via Roma 6	NULL	
0034	BCD Spa	Via Verdi 4	04554303	
0101	A&G Srl	Viale Morgagni 16	NULL ←	sconosciuto

Tuple non corrette

 Occorre che le tuple rappresentino informazioni corrette per l'applicazione

Ex: Valori nulli

Non ammesso! <	Matricola	Cognome	Nome	Data di nascita	STUDENTI
Tron unimicsso.	NULL	Bianchi	Anna	22/03/1967	STOBETTI
	A80293450	NULL	NULL	NULL +	~????
	A80197456	Melli	Mara	NULL •	• • • • • • • • • • • • • • • • • • • •
	Può essere accettabile se non è un attributo				
	! essenziale				

27

Vincoli di integrità

- Un vincolo di integrità è una proprietà che deve essere soddisfatta dalle istanze della base di dati che rappresentano informazioni corrette per l'applicazione
- Un vincolo può essere visto come un predicato che associa ad un'istanza di base di dati il valore vero o falso
- Se il predicato assume il valore vero, l'istanza soddisfa il vincolo
- Ad uno schema di base di dati si può associare un insieme di vincoli di integrità. Un'istanza è ammissibile se soddisfa tutti i vincoli definiti.

Tipi di vincolo

Vincolo intrarelazionale

E' definito rispetto ad una singola relazione. Può riguardare:

- le tuple nel complesso (es. non possono esistere due tuple con uno stesso valore per un dato attributo A - vincoli di chiave)
- le tuple indipendentemente le une dalle altre (vincolo di tupla)
- i valori ammessi per un attributo (vincolo di dominio)

Vincolo interrelazionale

Coinvolge più relazioni

"riferimenti appesi" (vincoli di integrità referenziale)

29

Vincoli intrarelazionali

 Sono vincoli che coinvolgono il valore degli attributi all'interno di una stessa relazione

ESAMI

Studente	Voto	Lode	Corso	
A80198760	37 ←		01	— Valore non ammesso
A80293450	30	L	04	- varore non animesso
A80198330	22		01	Combinazione non ammessa
A80198330	25	L ←	03	— Comomazione non animessa

Non ci possono essere due studenti con matricola uguale!

Matricola	Cognome	Nome	Data di nascita
A80198760	Bianchi	Anna	22/03/1967
A80293450	Rossi	Andrea	13/04/1968
A80198760	Felici	Lorenzo	25/02/1969
A80197456	Melli	Mara	17/10/1966

STUDENTI

Vincoli interrelazionali

- Sono vincoli che coinvolgono più relazioni
- Garantiscono l'integrità dei riferimenti fra tabelle

Studente	Voto	Corso
A80198760	28	01
A80293450	30	04
A80198330	27	01
A80198330	25	03
A80197456	21	05

ESAMI

Codice	Titolo	Docente
01	Analisi I	Anna Verdi
03	Geometria	Andrea Pitagora
04	Fisica I	Luca Galileo

CORSI

31

Vincoli di tupla

- Esprimono condizioni sui valori degli attributi ciascuna tupla indipendentemente dalle altre
- Sono espressi con predicati che devono essere veri per tutte le tuple

(Voto≥18) AND (Voto≤30) NOT((Lode='L') AND (Voto≠30))

 Possono anche essere definite da espressioni aritmetiche che legano fra loro i valori degli attributi

PAGAMENTI(Data Importo, Ritenute, Netto)

Netto = Importo-Ritenute

- I vincoli di chiave sono fondamentali
- Una chiave è un insieme di attributi utilizzato per identificare univocamente le tuple di una relazione

M atricola	Cognome	Nome	Data di nascita	Corso
A80198760	Rossi	Andrea	22/03/1967	Ingegneria
A80293450	Rossi	Luca	22/03/1967	Ingegneria
A80293856	Rossi	Filippo	25/02/1969	Fisica
A80198777	Bianchi	Filippo	25/02/1969	Lettere
A80197456	Bianchi	Filippo	22/10/1966	Lettere

33

Superchiavi e chiavi

- Un insieme K di attributi è superchiave per una relazione r se r non contiene due tuple distinte t_1 e t_2 con $t_1[K]=t_2[K]$
- Un insieme di attributi K è chiave per una relazione r se è una superchiave minimale (cioè non esiste un'altra superchiave K' che è contenuta propriamente in K)

CHIAVI (Superchiavi Minimali)

```
{Matricola}
{Nome, Cognome, Data di Nascita}

SUPERCHIAVI

{Matricola, Nome}

{Nome, Cognome, Data di Nascita, Corso}

{Matricola, Corso}
```


Chiavi... per caso!

 Alcune combinazioni di attributi possono essere chiavi "per caso" per una data istanza di relazione

Matricola	Cognome	Nome	Data di nascita	Corso
A80198760	Rossi	Andrea	22/03/1967	Ingegneria
A80293450	Rossi	Luca	22/03/1967	Ingegneria
A80293856	Rossi	Filippo	25/02/1969	Fisica
A80198777	Bianchi	Filippo	25/02/1969	Lettere
A 80197456	Bianchi	Filippo	22/10/1966	Lettere

 Niente vieta che prima o poi possano iscriversi allo stesso corso due persone nate lo stesso giorno e con lo stesso nome

35

Scelta delle chiavi

- Ogni relazione r(X) ha sempre una chiave
 - L'insieme di tutti gli attributi X è una superchiave dato che non possono esistere 2 tuple uguali
- La scelta della chiave deve tenere conto delle proprietà del mondo reale da cui provengono i dati
 - I vincoli sono definiti a livello di schema e devono essere validi per ogni istanza corretta nel mondo reale
- Può essere aggiunto un campo ad hoc (ad esempio la matricola) da usare come chiave

Importanza delle chiavi

- l'esistenza delle chiavi garantisce l'accessibilità a ciascun dato della base di dati
- le chiavi permettono di correlare le tuple in relazioni diverse (il modello relazionale è basato su valori e non su puntatori)
- ammettere valori nulli per gli attributi di una chiave può causare ambiguità

M atricola	Cognome	Nome	Data di nascita	Corso
A80198777	Bianchi	Filippo	25/02/1969	Lettere
NULL	Bianchi	Filippo	NULL	Lettere
55			55	

37

Chiavi primarie

- E' una chiave su cui sono vietati i valori nulli
- Si può sempre definire un attributo che ha la proprietà di essere una chiave primaria
 - non è detto che tale attributo abbia un significato per l'applicazione
 - può essere generato in modo automatico all'atto dell'inserimento (es. codice progressivo)

<u>Matricola</u>	Cognome	Nome	Data di nascita	Corso
A80198777	Bianchi	Filippo	25/02/1969	Lettere
A 8 0 7 1 0 1 1 1	Bianchi	Filippo	22/09/1971	Lettere

Le corrispondenze fra i dati in relazioni diverse si stabiliscono per mezzo dei valori di chiavi delle tuple

AGENTI

Codice	Data	Agente	Art	Prov	Numero	}
174655	25-12-1999	672	44	FI	G03635	
156732	13-05-2000	223	12	SI	734563	
456345	17-08-1999	672	44	GR	234322	

INFRAZIONI

AUTO

Prov	Numero	Proprietario	Indirizzo
FI	G03635	Gilli Luca	Via Oro
SI	734563	Tilli Nedo	Via Abete
GR	234322	Billi Aldo	Via Sole

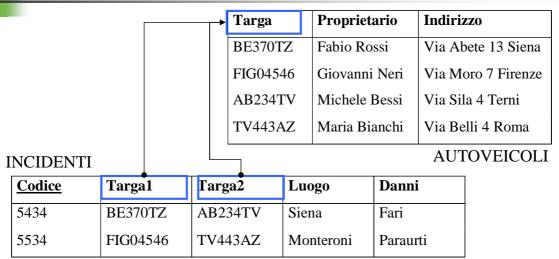
39

Vincoli di integrità referenziale

Un vincolo di integrità referenziale (foreign key) fra un insieme di attributi X di una relazione R_1 e un'altra relazione R_2 è soddisfatto se i valori su X di ciascuna tupla in R_1 compaiono come valori della chiave (primaria) dell'istanza di R_2

Codice	Data	Agente	Art	Prov	Numero
174655	25-12-1999	672	44	FI	G03635
156732	13-05-2000	223	12	SI	734563
456345	17-08-1999	345	44	GR	234322

INFRAZIONI


?

Matricola	Cognome	Nome
672	Rossi	Mario
223	Verdi	Francesco
532	Belli	Carlo

AGENTI

Occorre definire un vincolo di integrità referenziale fra l'attributo Agente della relazione INFRAZIONI e la relazione AGENTI (chiave primaria Matricola)

- 1) vincolo di integrità referenziale fra l'attributo Targa1 della relazione INCIDENTI e la relazione AUTOVEICOLI
- 2) vincolo di integrità referenziale fra l'attributo Targa2 della relazione INCIDENTI e la relazione AUTOVEICOLI

41

Azioni compensative

- un'operazione causa una violazione di un vincolo di integrità referenziale... cosa accade?
- Es. cancellazione di una tupla referenziata
 - Rifiuto dell'operazione
 - Eliminazione in cascata
 - Introduzione di valori nulli

M atricola	Cagnama	Duagatta	1			progetti
A007	Rossi	Progetto 672	_	<u>Codice</u>	Inizio	Durata
A015	Verdi	223		672	1/10/2001	12
A016	Belli	532		223	1/12/2001	24
impiea			1	532	6/11/2001	6

42

Azioni compensative [esempio]

in	npiegati					
	<u>Matricola</u>	Cognome	Progetto] .	<u> </u>	
	A007	Rossi	672		Codice	Inizio
	A015	Verdi	NULL	•	672	1/10/2001
	A016	Belli	532		223	1/12/2001
				J	522	6/11/2001

sostituzione con valori nulli

impiegati							progetti
<u>Matricola</u>	Cognome	Progetto	1 .	<u> </u>			progetti
A007	Rossi	672	1	Codice]	nizio	Durata
1015	Verdi	223	<u> </u>	672]	1/10/2001	12
A016	Belli	532		223	1	1/12/2001	24
		l.	_	532	6	5/11/2001	6

cancellazione in cascata

progetti

Durata