
A short description of

the Graph Neural Network toolbox

Franco Scarselli

Dipartimento di Ingegneria dell Informazione

Universitá di Siena, via Roma 56, Siena, Italy

email: franco at ing.unisi.it

July 21, 2011

Abstract

The Graph Neural Network (GNN) is a new connectionist model for graph processing.
The GNN model is particularly suited for problems whose domains can be represented
by a set of patterns and relationships between them. This document describes the Graph
Neural Network simulator (version 1.1), which has been developed by me and Grabriele
Monfardini.

1

Contents

1 introduction 3

2 How to install the toolbox 3

3 A very simple example 3

4 Dataset construction 4

4.1 dataSet.config . 5
4.2 dataSet.trainSet, dataSet.validationSet, dataSet.testSet 5

5 Model configuration and learning 6

5.1 configure . 7
5.2 learn . 7
5.3 The file GNN.config . 8

5.3.1 Model parameters . 8
5.3.2 Learning algorithm parameters . 9
5.3.3 Other parameters . 11

5.4 dynamicSystem . 11
5.5 learning . 12
5.6 testing . 13

6 The benchmarks 14

2

1 introduction

This document describes the Graph Neural Network toolbox (version 1.1). The Graph Neural
Network (GNN) is a new connectionist model for graph processing. The GNN model is
particularly suited for problems whose domains can be represented by a set of patterns and
relationships between them. Intuitively, GNNs extend common static neural networks for
the information adopted in order to classify (or, more generally, to compute an output for)
a pattern. A static network classifies a pattern using only the pattern features, whereas a
GNN can use also the related patterns, the connected relationships and, more generally, all
the information contained in the domain. A description of the GNN model, its properties
and examples of applications can be found in [6, 5].

The GNN toolbox is supposed to work with any version of Matlab after release 5 (and
probably even with previous releases). The toolbox is available on line [2].

2 How to install the toolbox

The toolbox installation is straightforward. Decompress the file containing the toolbox any-
where in your computer. Then, add the toolbox main directory and its subdirectories to the
Matlab path.

3 A very simple example

The main commands provided by the toolbox are easily illustrated by using the simple ex-
periment displayed in Algorithm 1.

1 global dynamicSystem, learning, dataSet, testing;
makeXXXX;

1 configure GNN.config;
learn;
plotTrainingResults;
test;

Algorithm 1: A simple example. Here, makeXXXX stands for any benchmark con-
struction procedure in the directory datasets.

The meaning of each line of the experiment is as follow.

1. adding the working variables to the workspace
The toolbox stores the working environment into four global variables: dynamicSystem,
learning, dataSet, testing. More precisely, dataSet contains the considered dataset,
including the training, the validation and the test set; dynamicSystem and learning

store the learning environment; testing includes all the results generated by the test
phase. The first command of Algorithm 1 adds those variables to the workspace, so
that the user can inspect the working environment. Such a command can be omitted,
when the user is not interested in those variables.

2. dataset construction
The sub–directory datasets contains a number of scripts, in the form of makeXXXX,

3

that allow to construct some predefined benchmarks. For each synthetic benchmark a
configuration file, called makeXXXX.config, is included, which defines the parameters
of the construction procedure.

3. configuration
The model and the learning environment is configured by the procedure configure. By
default, configure exploits the parameters in the file GNN.config.

4. learning
The model is trained by the procedure learn.

5. plotting the history of learning
The evolution of some variables during learning can be plotted by the procedure plotTrainingResults.

6. testing
The model is tested by the procedure tested.

Figure 1 shows the expected data flow and clarifies which variables are used by the pro-
cedures. Experiments can be customized by modifying either the configuration files and/or
the commands. Actually, a user who needs to rebuild the experiments will only modify the
configuration files. On the other hand, to apply GNNs on other datasets, the user must
replace makeXXXX with his/her own procedure. Some users may also want to add a post
processing procedure after test in order to compute error measures which are not available
in the toolbox.

Figure 1: The data flow

More details on the toolbox procedures and variables are disclosed in the following sections.

4 Dataset construction

The data structure dataSet contains all the information required by the toolbox to carry out
the learning and the test phases. Thus, in order to face a new application, it is sufficient to
construct the appropriate dataSet.

The variable dataSet is a hierarchical data structure which contains mandatory toolbox
components and specific problem components. The former components are needed by the
toolbox for training and testing; other specific problem components may be introduced by
the user to keep track of the parameters used to generate the benchmark, to allow the compu-
tation of specific error measures or to store any other information required by the considered
application. For having examples of dataSet, the user can run the benchmarks provided
along with the toolbox. In the following, the mandatory components are described.

4

The variable dataSet must have four substructures: config, which includes meta data
about the considered problem, and trainSet, validationSet, testSet, which contain the
train set, the validation set and the test set, respectively.

4.1 dataSet.config

More precisely, dataSet.config includes:

• type (mandatory)
The type of the problem, which can be “classification” or “regression” according to
whether the faced problem is a classification or a regression application, respectively.

• rejectLowerThreshold, rejectUpperThreshold (mandatory in classification prob-
lems)
Two thresholds that specify the reject region and are used to evaluate the GNN model
in classification problems. More precisely, in classification problems, a GNN output is
considered positive if it is larger than rejectUpperThreshold and negative if it is lower
that rejectLowerThreshold. A value in between the thresholds is rejected: the GNN
decision is considered uncertain. Then, the GNN decision is compared with the sign of
the target in order to compute the accuracy.

4.2 dataSet.trainSet, dataSet.validationSet, dataSet.testSet

The substructures dataSet.trainSet dataSet.validationSet and dataSet.testSet con-
tain the graphs and the targets of the training, the validation and the test set, respectively.
In the following, we will assume that each set contains just one graph. However such a fact
is not a limit in practice, because a set of graphs can be always merged into a single graph
having disconnected components. Since in the GNN framework, unconnected nodes do not
effect each others, processing a set of graphs or the corresponding union graph does not make
any difference.

The three structures have the following substructures:

• connMatrix (mandatory, sparse)
It is a N ×N matrix, where N is the total number of nodes in the dataset. The matrix,
which should be sparse to limit memory allocation, defines the dependences between
the nodes. Let ci,j be the (i, j) element of connMatrix. Then, ci,j = 1 if the i-th
node depends on the j-th node and 0 = ci,j , otherwise. A more clear definition can be
obtained observing that, according to the GNN model [6], the state xn of a node n is
computed as

xn = fw(ln,xch[n], lch[n], l(n,ch[n]))

where xch[n] and lch[n] are the states and the labels of the nodes in the neighborhood

ch[n] of n, respectively, and l(n,ch[n]) collects the labels of the edges connected to n and

fw is the local transition function. Thus, connMatrix defines the neighborhoods (the
connections): ci,j = 1 holds if the j-th node is in the neighborhood of i-th node ((j, i)
is in the connections of i) and ci,j = 0, otherwise1.

1Notice that, here, connMatrix is deliberatively specified using the dependencies between nodes and not
the arcs of input graph. Actually, in the GNN processing paradigm, arcs represent dependencies and it may

5

• nodeLabels (mandatory, possibly sparse)
An L×N matrix, where L is the label dimension, N is the total number of nodes. The
matrix contains the node labels (i.e., lN of Eq. (2) in [6]): the i-th column is the label
of the i-th node.

• edgeLabels (mandatory for graph with edge labels, possibly sparse)
An H × E matrix, where H is the dimension of the edge labels and E is the total
number of edges in the dataset. The matrix contains the edge labels: the i-th column
contains the label of the i-the edge. In order to define the i assigned to each edge,
the edges h → k are sorted first by the parent h and then, for those edges having the
same father, by the child k. An equivalent definition can be obtained by enumerating
the edges encountered in a visit of the matrix maskMatrix according to the following
schema: first the first column is scanned top-down, then the second column is scanned
top-down, and so on. In practice, such an edge ordering can be obtained by the Matlab
command [c,r,v]=find(connMatrix) that stores the sorted indexes of the children
and parents in c and r, respectively: thus, the i-the edge is (c(i),r(i)).

• targets (mandatory, possibly sparse)
An O × N matrix, where O is the output dimension, N is the total number of nodes.
The matrix contains the targets: the i-th column is the target of the i-th node.

• maskMatrix (mandatory, sparse)
An N ×N matrix, where N is the total number of nodes. The matrix, which should be
sparse to limit memory allocation, is used in squared error function to assign a weighted
importance to each GNN output. More precisely, the mse error function is computed as
((targets − o)′maskMatrix(targets− o), where o is the vector of the GNN outputs.
In the most obvious case, maskMatrix is just a diagonal matrix, where the i-th element
di of the diagonal is 1 (di = 1) if the i-th node output is supervised and it is 0 (di = 0),
otherwise. Thus, while, for implementation reasons, the GNN toolbox computes the
output of each node, some outputs can be discarded from the error function using
maskMatrix. More generally, if maskMatrix is diagonal, a customized weight can be
assigned to each node by an appropriate choice of the di: in fact, the mse error function
is
∑

i die
2
i , where ei is the difference between the target and the output at the i-th node.

5 Model configuration and learning

The toolbox implements the general GNN models described in [6, 5] with two limits: the
positional version of the GNN have not been implemented; the transition net of the linear
(non positional) model does not take in input the child and the edge labels, but it can process

happen that connMatrix is just the transposed connection matrix of the processed graph. However, such a
direct transformation from the input graph to connMatrix is correct only if an arc j → i expresses the fact
that the i-th node depends on the j-th and the converse dependence is not necessarily true. In general, three
different cases may happen corresponding to difference meaning of the edges of a graph. A directed edge j → i

that denotes the dependence of i on j, but not the converse, can be represented by setting ci,j = 1 and cj,i = 0.
An undirected edge i ↔ j that denotes a mutual and commutative dependence between the nodes i, j can
be represented by setting to ci,j = cj,i = 1. Finally, a directed edge j → i that denotes the presence of two
different kinds of dependences between i, j (i.e., the way i depends on j is different from the way j depends
on i) can be represented setting ci,j = cj,i = 1 so as for undirected graphs, but edge labels must be used to
distinguish between the two kinds of dependences.

6

only the parent label. However, those limits correspond to what specified in the experimental
part of the papers. Thus, by running the paper experiments with the same parameters, the
same results are expected.

The learning procedure used by the toolbox is specified in [6]: see Table 1 for a short
description and Appendix 1 for the implementation details. The two commands configure
and learn allow to initialize the needed data structures and to run the learning procedure.
In the following, the two commands are described along with the GNN configuration and
the two variables dynamicSystem, learning, which contain the information related to the
model and the learning environment, respectively.

5.1 configure

The command configure loads the description of the model and the learning parameters
from a configuration file and it constructs the required data structures for the following pro-
cedures. The users can provide in input to configure his/her own configuration file, f.i., with
“configure XXX.config”. If the configuration file is omitted, the default file GNN.config is
loaded.

5.2 learn

The command learn runs the learning procedure. Learning will last a predefined number of
epochs as specified by the configuration file. When a validation set is used, the procedure will
store the parameters of the network achieving the best performance on the validation set, but
it will not stop the procedure before having completed all the epochs.

At a frequency defined by the configuration file, the learning procedure evaluates the
current network on the validation set and displays:

• The current epoch number.

• The current error on train set.

• The current error on validation set. The presence of the word “Best” indicates that the
best validation error has been achieved.

• The difference between the 1–norm of the Jacobian matrix2 and the threshold for Jaco-
bian control as defined by the configuration file. Such a difference, which is displayed
only if it is larger than 0, allows to verify that the Jacobian control is working correctly.
The displayed value should be small and close to 0 or, more precisely, the sum of this
value and the Jacobian threshold should be smaller than 1.

Learning can be restarted several times by repeating the command learn. Every time
learn is called, the training will last for the predefined number of epochs. Moreover, the
learning procedure can also be stopped by pressing ctrl+C. In case of stopping, the training
is halted at the exact moment when the interruption key is pressed, so that the last epoch
may have been only partially completed. However, since each epoch modifies only slightly
the weights, the fact that an epoch is only partially completed is not expected to affect
significantly the result of the whole training procedure.

2The 1–norm of a matrix {ai,j} is defined as maxj

∑
i
|ai,j |.

7

5.3 The file GNN.config

The configuration file GNN.config contains the parameters of the GNN model and the learning
procedure. Those parameters are loaded, by the command configure, into the config

substructure of variables dynamicSystem and learning. Most of the parameters can be also
changed during learning: it is sufficient update them in the variables. The following sections
describe the available parameters and display the range of the suggested/admitted values, the
default value and the storing location.

5.3.1 Model parameters

• type {linear,neural} [neural] dynamicSystem
The type of the GNN. According to a previous terminology, neural stands for the non–
linear non–positional GNN, linear for linear non-positional GNN.

• nStates (0,inf) [2] dynamicSystem
The state dimension, i.e., the dimension of the state attached to each node.

• transitionNet, outNet, forcingNet

The parameters of the layered networks exploited by the GNN. The network forcingNet
is used only in linear non–positional GNNs. All those networks have the following
parameters.

– nLayers {1,2} [2] dynamicSystem
The number of layers of the network: 2 stands for one hidden layer, 1 for no hidden
layer.

– outActivationType {linear,tanh} [tanh] dynamicSystem
The activation function of the output layer, which can be the linear function (lin-
ear) or the hyperbolic tangent function (tanh). Notice that if the network has a
hidden layer, then the hidden layer neurons always exploit a hyperbolic tangent
function. Moreover, in linear non positional GNNs, the transition net must use
the hyperbolic tangent function in output layer (see [6]).

– nHiddens (1,inf) [5] dynamicSystem
Number of hidden neurons.

– weightRange (10−10,1) [0.01] dynamicSystem
The network weights are initialized by a uniform random function in the range
[-weightRange,weightRange].

• Jacobian control parameters
When the Jacobian control is enabled, a penalty term is added to the error function
in order to ensure that the global dynamic system is contractive [6]. In practice, the
Jacobian control is not used by linear GNNs and it has to be used in non–linear GNNs.
The following parameters specify the Jacobian control model.

– useJacobianControl {0,1} [1] dynamicSystem
This parameter enables or disable the Jacobian control.

– jacobianThreshold (0, 1 − 10−9) [0.85] dynamicSystem
It is the threshold ν described in the point NON–LINEAR (NON–POSITIONAL)

8

GNN in [6]: the Jacobian penalty is larger than 0, when the 1-norm of the Jacobian
matrix is over such a threshold.

– jacobianFactorCoeff (0,∞) [1000] dynamicSystem
It is the coefficient β described in the point NON–LINEAR (NON–POSITIONAL)
GNN in [6]: the coefficient allows to weight the importance of the mse error w.r.t.
the penalty term.

• Saturation control parameters
The saturation control aims to avoid that neurons becomes very saturated3. Such a
control is implemented by adding a decay factor to the error function, when the output
of the node is larger than a predefined threshold. Saturation control is used only by the
non–linear GNNs and in hidden neurons.

– useSaturationControl {0,1} [1] dynamicSystem
This parameter enables and disables the saturation control.

– saturationThreshold [0, 1 − 10−9] [0.99] dynamicSystem
The threshold for saturation control: saturation control is active when the node
output is larger than such a threshold.

– saturationCoeff (0,∞) [0.001] dynamicSystem
The coefficient of the saturation control: it allows to weight the importance of the
mse error w.r.t. the forgetting factor of the saturation control.tance of the mse
error w.r.t. the forgetting factor of the saturation control.

• useLabelledEdges {0,1} [0] dynamicSystem
It enables and disables the use of the labeled edges. If dataSet.trainSet and, as a
consequence, dataSet.testSet and dataSet.trainSet contain a structure edgeLabel,
then useLabelledEdges must be 1 and it must be 0, otherwise.

• errorFunction {mse,quadratic,outmult,ranking,autoassociator} [mse] dynamicSystem
The error function adopted by the learning procedure. The error can be: the common
mean squared error (mse); the quadratic error adopted in the half hot example in [5]
(quadratic); the quadratic error with output multiplication adopted in web page ranking
example in [6] (outmult); the logarithm error used in [3] (ranking); the output network
is an autoassociator and the error function for autoassociators (autoassociator).

5.3.2 Learning algorithm parameters

• learningSteps (1,∞) [500] learning
The number of learning epochs.

• The parameters specifying the number of iterations of the forward and backward proce-
dures
As described in the Algorithm of Figure 1 in [6], the stable state is computed by the for-
ward procedure, which iteratively updates the node states, and the gradient is computed
by the backward procedure, which iteratively backpropagates the gradient. The forward
procedure repeats the state computation up to when the relative difference between two

3Node saturation is a problem, because when the neuron becomes saturated, the gradient becomes close to
0: in the limit case, the gradient can be exactly 0 due to numerical rounding.

9

consecutive states x(t)−x(t−1)
x(t) is less than a given threshold forwardStopCoefficient

or a maximum number of repetitions maxForwardSteps is reached. Similarly, the
backward procedure repeats the backpropagation up to when the delta z(t) is smaller
than a given threshold backwardStopCoefficient or a maximum number of iterations
maxBackwardSteps is reached.

– maxForwardSteps (1,∞) [10] learning
Maximum number of iterations for the forward procedure.

– maxBackwardSteps (1,∞) [10] learning
Maximum number of iterations for the backward procedure.

– forwardStopCoefficient (10−15, 10−2]) [10−8] learning
Stop threshold for the forward procedure.

– backwardStopCoefficient (10−15, 10−2]) [10−8] learning
Stop threshold for the backward procedure.

• Validation parameters
At a predefined frequency, the current GNN model is evaluated on validation set. The
GNN state on validation is computed using the forward procedure of the algorithm in
Table 1 of [6].

– useValidation 0,1 [1] dynamicSystem
It enables or disable the use of the validation set.

– stepsForValidation (1,50) [20] dynamicSystem
It is the frequency at which the GNN is evaluated on the validation set. With the
same frequency, the learning procedure shows the error on training set, the error
on validation and the Jacobian error.

– maxStepsForValidation (1,∞) [10] dynamicSystem
The forward procedure on validation set is iterated until the relative difference
x(t)−x(t−1)

x(t) between two consecutive states is less than stopCoefficientForValidation.

– stepsForValidation (10−15, 10−2) [10−5] dynamicSystem
The iteration of the forward procedure on validation set is also stopped if the
maximum number of iterations stepsForValidation is reached.

– useValidationMistakenPatterns 0,1 [0] dynamicSystem
Such a parameter allows to select the error function for the the validation set.
Actually, if the parameter is set to 0, the error function adopted for the validation
set is the same used on training set. Otherwise, if the parameter is set to 0, the
error is given by the number of mistaken patterns, possible balanced according to
the relative number of positive and negative classes (see later): such a setting can
be useful in classification problems.

• Resilient parameters
The GNN learning algorithm adopts resilient backpropagation . The default parameters
of resilient are those adopted in the original paper [4].

– deltaMax (50,200) [100] learning.rProp
It is denoted ∆max in [4].

10

– deltaMin (10−10, 10−2) [10−7] learning.rProp
It is denoted ∆max in [4].

– etaP (1.1,1.5) [1.2] learning.rProp
It is denoted η+ in [4].

– etaM (0.2,0.9) [0.5] learning.rProp
It is denoted η− in [4].

5.3.3 Other parameters

• Log to file parameters
The toolbox can log to file.

– useLogFile 0,1 [1] dynamicSystem
When this parameters is enabled, the toolbox save to a log file having the same
name as the config file and with a .log extension.

– useAutoSave 0,1 [1] dynamicSystem
When this parameter is set to 1, the toolbox periodically saves the whole learning
environment to a file, having the same name as the config file and with a .mat

extension. Pay attention, saving the learning environment may make the training
slow.

– autoSaveEveryTotValidations (1,∞) [5] dynamicSystem
When autosaving is enabled, this parameter specifies the frequency in epochs of
the saving.

• History saving parameters
The toolbox stores into the structure learning the evolution of some learning variables.
In order to limit the consumed memory, the storing can be disabled.

– saveErrorHistory 0,1 [1] dynamicSystem
It enables or disables the storing of the error history.

– saveJacobianHistory 0,1 [1] dynamicSystem
It enables or disables the storing of the Jacobian error history.

– saveSaturationHistory 0,1 [1] dynamicSystem
It enables or disables the storing of the saturation error history.

– saveStabilityCoefficientHistory 0,1 [1] dynamicSystem
It enables or disables the storing of the history of stability coefficient.

– saveIterationHistory 0,1 [1] dynamicSystem
It enables or disables the storing of the history of the numbers of forward and
backward iterations.

– saveStateHistory 0,1 [0] dynamicSystem
It enables or disables the storing of the history of states.

5.4 dynamicSystem

The variable dynamicSystem includes data about the current GNN model and encoding net-
work. Such a data is modified by the learning procedure (not by the testing procedure).

11

The variable contains the data at the interruption time, if the learning procedure is stopped,
either because the maximum number of epochs has been reached or because the user pressed
the Matlab interruption key. Notice that historical information (f.i., the parameters of the
GNN achieved the best result on validation set) are not stored in dynamicSystem but in the
variable learning.

In the following the most important substructures of dynamicSystem are listed and ex-
plained.

• config

It includes several configuration parameters of the GNN model and the learning envi-
ronment. The toolbox read those parameters from the configuration file GNN.config,
which have been described in the previous section.

• state

A S × N matrix, where S is the dimension of the state and N is the total number of
nodes in the dataset. The matrix contains the global state on train set (i.e., x(t) of Eq.
(4) in [6]). Notice that state equals to the stable state (i.e., x of Eq. (2) in [6]) after
the feedforward phase.

• parameters

A variable that contains the current GNN parameters. The parameters are stored
into three different substructures outNet, transitionNet, forcingNet, according to
the network they belong. Actually, a GNN models is made by three networks that
implement an out function, a transition function and a forcing function, where the last
is used only for the GNN linear model. The parameters of each network are stored into
four substructures:

– weights1

A matrix a× b containing the first layer weights: if the network has a hidden layer
then a is the number of hidden weights, otherwise, if the network has no hidden
layer, a is the number of outputs: in both cases b is the number of inputs neurons.

– weights2

A matrix a × b containing the second layer weights, where a is the number of
outputs and b the number of hidden neurons. The substructure is set only if the
network has a hidden layer.

– bias1

A vector containing the first layer biases. More precisely, it contains the biases of
the hidden layer, if the network has a hidden layer, or the biases of the output,
otherwise.

– bias2

A vector containing the second layer biases. The vector is set only if the network
has a hidden layer, when the second layer is the output layer.

5.5 learning

The variable learning includes data about the learning environment. Such a data is modified
by learning procedure (not by testing procedure). The variable has three substructures:
config, current, history.

12

• config

It includes several configuration parameters of the learning environment. The tool-
box read those parameters from the configuration file GNN.config, which have been
described in the previous section.

• current

It contains the working parameters of the learning environment.

• history

It contains the history of some learning variables including:

– trainErrorHistory

The train error history.

– validationErrorHistory

The validation error history.

– forwardItHistory

The number of iterations of the forward procedure.

– backwardItHistory

The number of iterations of the backward procedure.

– jacobianHistory

The history of the Jacobian error.

– stabilityCoefficientHistory

The history of the stability coefficient. The stability coefficient is x(t+1)−x(t)
x(t) com-

puted at the last the iteration (of each epoch) of the forward procedure. A large
stability coefficient may suggest that the Jacobian control is not working and the
forward procedure is not capable of making the system converge.

– saturationCoefficient

The history of the saturation coefficient. The saturation coefficient is the mean
output level of the hidden neurons.

5.6 testing

The variable testing includes the results of the testing procedure. The data is slitted into
two substructures current, optimal, containing the results achieved by the GNN at the
end of the learning (current) and those achieved by the GNN that got the best error on
the validation set (optimal). The data is further splitted into three substructures trainSet,
validationSet, testSet with the results of the corresponding sets. Finally, each one of
those structures includes the following substructures.

• error

The error computed by the error function adopted for training, f.i., mse by default.

• accuracy

The accuracy.

• out

The GNN output.

13

• mistakenPatternIndex (only in classification problems)
The indexes of the nodes that have been misclassified, i.e., whose output is wrong.

• mistakenPatterns (only in classification problems)
The labels of the the nodes that have been misclassified, i.e., whose output is wrong.

• mistakenTargets (only in classification problems)
The targets of the node that have been misclassified, i.e., whose output is wrong.

• maxError

The maximum error, over all the nodes. The error is the modulus of the difference
between the GNN output and the target.

• maxRelativeError

The maximum relative error, over all the nodes. The relative error is the modulus of
the difference between the GNN output and the target divided by the target.

• acc5percent

The accuracy over all the nodes, when the correctly classified nodes are those for which
the relative error is less than 5%.

• acc5percent

The accuracy over all the nodes, when the correctly classified nodes are those for which
the relative error is less than 10%.

Notice that a user can exploit the above substructures to implement a post processing
and to compute his/her own performance measure.

6 The benchmarks

The toolbox contains a number of benchmarks including the datasets used for the papers
[6, 5]. Those datasets can be rebuilt using the files makeXXXX in the directory “datasets”.
For each dataset, there is a configuration file with the same name as the command and
“.config” extension.

• makeCliqueDataset

The clique example in [5].

• makeHalfHotDataset

The half hot on uniform graphs example in [5].

• makeMutagenicDataset

The mutagenesis example in [6].

• makeNeighborsDataset

The neighbors example in [5].

• makeOddEvenDataset

A benchmark where the goal is to decide, for each node, whether the integer label is
even or odd. In this benchmark, the connectivity of the graph is not useful.

14

• makeParityDataset

The parity example in [1].

• makeSecondOrderNeighborsDataset

The second order Neighbors example in [5].

• makeSubGraphDataset

The subgraph matching example in [6].

• makeTreeDepthDataset

The tree depth example in [5].

• makeWebPagesScoringDataset

The web page ranking example in [6].

• makeGeneralDataset

A procedure to load generic datasets.

References

[1] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In
Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE International Joint Confer-
ence on, volume 2, pages 729 – 734 vol. 2, july-4 aug. 2005.

[2] G. Monfardini and F. Scarselli. The graph neural networks toolbox: it is available at
http://airgroup.dii.unisi.it/projects/GraphNeuralNetwork/download.htm, 2004.

[3] A. Pucci, M. Gori, M. Hagenbuchner, F. Scarselli, and AC Tsoi. Investigation into the ap-
plication of graph neural networks to large-scale recommender systems. Systems Science,
32(4):17–26, 2006.

[4] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learn-
ing: The RPROP algorithm. In Neural Networks, 1993., IEEE International Conference
on, pages 586–591. IEEE, 2002.

[5] F. Scarselli, M. Gori, G. Monfardini, Ah Chung Tsoi, and M. Hagenbuchner. Compu-
tational capabilities of graph neural networks. IEEE Transactions on Neural Networks,
20(1):81–102, 2009.

[6] F. Scarselli, M. Gori, G. Monfardini, Ah Chung Tsoi, and M. Hagenbuchner. The graph
neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

15

