Computational Logic

Constraint Logic Programming
Constraints

- Born within AI: e.g. house design
- Constraints used as problem representation:

 The man in yellow does not have green eyes
 The murderer knows no detective will ever wear dark clothes

- A solution is an assignment which agrees with the initial constraints:

 Murderer: López, green eyes, Magnum gun

- Or, alternatively, the solution can also be a set of constraints:

 The murderer is one of those who had met the cabaret entertainer
 (they represent several ground mappings from elements to variables)

- There may be no solution:

 Natural death
A General View

- **Ancestors:**
 - SKETCHPAD (1963), THINGLAB (1981), Waltz’s algorithm (1965?), MACSYMA (1983), ...

- **Constraints in logic languages – the origin of “constraint programming”:**
 - General theory developed.
 - Practical systems, generally based on Prolog + some constraint domain(s).

- **Constraints in imperative languages:**
 - Equation solving libraries (ILOG)
 - Timestamping of variables: \(x := x + 1 \leftrightarrow x_{i+1} := x_i + 1 \)
 (similar to iterative methods in numerical analysis)

- **Constraints in functional languages, via extensions:**
 - Evaluation of expressions including free variables.
 - *Absolute Set Abstraction.*
A comparison with LP (I)

Example (Prolog): \(q(X, Y, Z) :- Z = f(X, Y). \)

\[
| \text{?- } q(3, 4, Z). \\
| Z = f(3, 4) \\
| \text{?- } q(X, Y, f(3,4)). \\
| X = 3, Y = 4 \\
| \text{?- } q(X, Y, Z). \\
| Z = f(X,Y) \\
\]

Example (Prolog): \(p(X, Y, Z) :- Z \text{ is } X + Y. \)

\[
| \text{?- } p(3, 4, Z). \\
| Z = 7 \\
| \text{?- } p(X, 4, 7). \\
| \{ \text{INSTANTIATION ERROR: in expression} \} \\
\]
A Comparison with LP (II)

Example (CLP(ℜ)): p(X, Y, Z) :- Z = X + Y.

2 ?- p(3, 4, Z).

Z = 7
*** Yes

3 ?- p(X, 4, 7).

X = 3
*** Yes

4 ?- p(X, Y, 7).

X = 7 - Y
*** Yes
A Comparison with LP (III)

- Features in CLP:
 - Domain of computation (reals, integers, booleans, etc).
 Have to meet some conditions.
 - Type of constraints allowed for each domain: e.g. arithmetic constraints

 \[+, *, =, \leq, \geq, <, > \]

 - Constraint solving algorithms: simplex, gauss, etc.

- LP can be viewed as a constraint logic language over Herbrand terms with a single constraint predicate symbol: “=”
A Comparison with LP (IV)

- Advantages:
 - Helps making programs expressive and flexible.
 - May save much coding.
 - In some cases, more efficient than traditional LP programs due to solvers typically being very efficiently implemented.
 - Also, efficiency due to search space reduction:
 - LP: generate-and-test.
 - CLP: constrain-and-generate.

- Disadvantages:
 - Complexity of solver algorithms (simplex, gauss, etc) can affect performance.

- Solutions:
 - better algorithms
 - compile-time optimizations (program transformation, global analysis, etc)
 - parallelism
Example of Search Space Reduction

Prolog (generate–and–test):

```
solution(X, Y, Z) :-
    p(X), p(Y), p(Z),
    test(X, Y, Z).
```

```
```

test(X, Y, Z) :- Y is X + 1, Z is Y + 1.

Query:

```
| ?- solution(X, Y, Z).
X = 14
Y = 15
Z = 16 ? ;
no
```

458 steps (all solutions: 465 steps).
Example of Search Space Reduction

- CLP(ℜ) (using generate–and–test):

 solution(X, Y, Z) :-

 p(X), p(Y), p(Z),

 test(X, Y, Z).

 test(X, Y, Z) :- Y = X + 1, Z = Y + 1.

- Query:
 ?- solution(X, Y, Z).

 Z = 16
 Y = 15
 X = 14

 *** Retry? y

 *** No

- 458 steps (all solutions: 465 steps).
Generate–and–test Search Tree

A5

Y=14 Y=15

A4 A3 A2 A1

X=15 X=16 X=7 X=3 X=11

Z=14 Z=15 Z=16 Z=7 Z=3 Z=11

B5

X=14

B4 B3 B2 B1

Y=14 Y=15 Y=16 Y=7 Y=3 Y=11

B
Example of Search Space Reduction

- Move \texttt{test(X, Y, Z)} at the beginning (constrain–and–generate):
 \[
 \text{solution(X, Y, Z)} :- \\
 \quad \text{test(X, Y, Z),} \\
 \quad \text{p(X), p(Y), p(Z).} \\
 \]

- \textbf{Prolog}: \texttt{test(X, Y, Z) :- Y is X + 1, Z is Y + 1.} \\
 \mid ?- \text{solution(X, Y, Z).} \\
 \{\text{INSTANTIATION ERROR: in expression}\}

- \textbf{CLP(ℜ)}: \texttt{test(X, Y, Z) :- Y = X + 1, Z = Y + 1.} \\
 ?- \text{solution(X, Y, Z).} \\
 Z = 16 \\
 Y = 15 \\
 X = 14 \\
 *** \text{ Retry? y} \\
 *** \text{ No}

- 6 steps (all solutions: 11 steps).
Constrain–and–generate Search Tree

\[g \]

\[X=14 \quad X=15 \quad X=16 \quad X=7 \quad X=3 \quad X=11 \]

\[Y=15 \quad Y=16 \]

\[Z=16 \]
Constraint Domains

- Semantics parameterized by the constraint domain: CLP(\(\mathcal{X}\)), where \(\mathcal{X} \equiv (\Sigma, \mathcal{D}, \mathcal{L}, \mathcal{T})\)
- Signature \(\Sigma\): set of predicate and function symbols, together with their arity
- \(\mathcal{L} \subseteq \Sigma\)–formulae: constraints
- \(\mathcal{D}\) is the set of actual elements in the domain
- \(\Sigma\)–structure \(\mathcal{D}\): gives the meaning of predicate and function symbols (and hence, constraints).
- \(\mathcal{T}\) a first–order theory (axiomatizes some properties of \(\mathcal{D}\))
- \((\mathcal{D}, \mathcal{L})\) is a constraint domain

Assumptions:
- \(\mathcal{L}\) built upon a first–order language
- \(\equiv \in \Sigma\) is identity in \(\mathcal{D}\)
- There are identically false and identically true constraints in \(\mathcal{L}\)
- \(\mathcal{L}\) is closed w.r.t. renaming, conjunction and existential quantification
Domains (I)

- \(\Sigma = \{0, 1, +, *, =, <, \leq\} \), \(D = \mathbb{R} \), \(D \) interprets \(\Sigma \) as usual, \(\mathbb{R} = (D, \mathcal{L}) \)
 - Arithmetic over the reals
 - Eg.: \(x^2 + 2xy < \frac{y}{x} \land x > 0 \) (\(\equiv xxx + xxy + xxy < y \land 0 < x \))

Question: is 0 needed? How can it be represented?

- Let us assume \(\Sigma' = \{0, 1, +, =, <, \leq\} \), \(\mathbb{R}_{Lin} = (D', \mathcal{L}') \)
 - Linear arithmetic
 - Eg.: \(3x - y < 3 \) (\(\equiv x + x + x < 1 + 1 + 1 + y \))

- Let us assume \(\Sigma'' = \{0, 1, +, =\} \), \(\mathbb{R}_{LinEq} = (D'', \mathcal{L}'') \)
 - Linear equations
 - Eg.: \(3x + y = 5 \land y = 2x \)
Domains (II)

- \(\Sigma = \{ <\text{constant and function symbols}>, = \} \)
- \(\mathcal{D} = \{ \text{finite trees} \} \)
- \(\mathcal{D} \) interprets \(\Sigma \) as tree constructors
- Each \(f \in \Sigma \) with arity \(n \) maps \(n \) trees to a tree with root labeled \(f \) and whose subtrees are the arguments of the mapping
- Constraints: syntactic tree equality
- \(\mathcal{FT} = (\mathcal{D}, \mathcal{L}) \)
 - Constraints over the Herbrand domain
 - Eg.: \(g(h(Z), Y) = g(Y, h(a)) \)
- \(\text{LP} \equiv \text{CLP}(\mathcal{FT}) \)
Domains (III)

- $\Sigma = \{ <\text{constants}>, \lambda, ., ::, = \}$
- $D = \{ \text{finite strings of constants} \}$
- D interprets $.$ as string concatenation, $::$ as string length
 - Equations over strings of constants
 - Eg.: $X.A.X = X.A$

- $\Sigma = \{ 0, 1, \neg, \land, = \}$
- $D = \{ \text{true, false} \}$
- D interprets symbols in Σ as boolean functions
 - $BOOL = (D, L)$
 - Boolean constraints
 - Eg.: $\neg(x \land y) = 1$
CLP(\(\mathcal{X}\)) Programs

- Recall that:
 - \(\Sigma\) is a set of predicate and function symbols
 - \(\mathcal{L} \subseteq \Sigma\)–formulae are the constraints
- \(\Pi\): set of predicate symbols definable by a program
- Atom: \(p(t_1, t_2, \ldots, t_n)\), where \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Pi\)
- Primitive constraint: \(p(t_1, t_2, \ldots, t_n)\), where \(t_1, t_2, \ldots, t_n\) are terms and \(p \in \Sigma\) is a predicate symbol
- Every constraint is a (first–order) formula built from primitive constraints
- The class of constraints will vary (generally only a subset of formulas are considered constraints)
- A CLP program is a collection of rules of the form \(a \leftarrow b_1, \ldots, b_n\) where \(a\) is an atom and the \(b_i\)’s are atoms or constraints
- A fact is a rule \(a \leftarrow c\) where \(c\) is a constraint
- A goal (or query) \(G\) is a conjunction of constraints and atoms
A case study: CLP(\(\mathbb{R}\))

- CLP(\(\mathbb{R}\)) is a language based on Prolog, with the addition of constraint solving capabilities over the reals (\(\mathcal{R}_{Lin}\)).
- CLP(\(\mathbb{R}\)) uses the same execution strategy as Prolog (depth–first, left–to–right).
- CLP(\(\mathbb{R}\)) is able to solve directly linear (dis)equations over the reals.
- Non–linear equations are delayed, waiting for them to eventually become linear.
- Most relevant feature w.r.t. Prolog (for our purposes): \(\text{is}/2\) disappears, and is subsumed by \(=/2\) and (extended) unification.
- Note: CLP(\(\mathbb{R}\)) is really CLP((\(\mathbb{R}, \mathcal{F}\mathcal{T}\)) — \(\mathcal{F}\mathcal{T}\) is often omitted.
Vector \times vector multiplication (dot product):
$\cdot : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$

$(x_1, x_2, \ldots, x_n) \cdot (y_1, y_2, \ldots, y_n) = x_1 \cdot y_1 + \cdots + x_n \cdot y_n$

Vectors represented as lists of numbers

```
prod([], [], 0).
prod([X|Xs], [Y|Ys], X * Y + Rest) :-
    prod(Xs, Ys, Rest).
```

Unification becomes constraint solving!

```
?- prod([2, 3], [4, 5], K).
K = 23
?- prod([2, 3], [5, X2], 22).
X2 = 4
?- prod([2, 7, 3], [Vx, Vy, Vz], 0).
Vx = -1.5*Vz - 3.5*Vy
```

Any computed answer is, in general, an equation over the variables in the query
Can we solve systems of equations? E.g.,
\[
3x + y = 5 \\
x + 8y = 3
\]

Write them down at the top level prompt:
?- prod([3, 1], [X, Y], 5), prod([1, 8], [X, Y], 3).
\(X = 1.6087, \ Y = 0.173913\)

A more general predicate can be built mimicking the mathematical vector notation \(A \cdot \mathbf{x} = \mathbf{b}\):

system(_, [], []).
system(Vars, [Co|Coefs], [Ind|Indeps]) :-
 prod(Vars, Co, Ind),
 system(Vars, Coefs, Indeps).

We can now express (and solve) equation systems
?- system([X, Y], [[3, 1],[1, 8]],[5, 3]).
\(X = 1.6087, \ Y = 0.173913\)
Non–linear Equations (CLP(ℜ))

- Non–linear equations are delayed
 \[- \sin(X) = \cos(X). \]
 \[\sin(X) = \cos(X)\]

- This is also the case if there exists some procedure to solve them
 \[- X*X + 2*X + 1 = 0. \]
 \[-2*X - 1 = X * X\]

- Reason: no general solving technique is known. CLP(ℜ) solves only linear (dis)equations.

- Once equations become linear, they are handled properly:
 \[- X = \cos(\sin(Y)), Y = 2+Y*3. \]
 \[Y = -1, X = 0.666367\]

- Disequations are solved using a modified, incremental Simplex
 \[- X + Y <= 4, Y >= 4, X >= 0. \]
 \[Y = 4, X = 0\]
Fibonacci Revisited (Prolog)

- **Fibonacci numbers:**
 \[
 F_0 = 0 \\
 F_1 = 1 \\
 F_{n+2} = F_{n+1} + F_n
 \]

- *(The good old) Prolog version:*

  ```prolog
  fib(0, 0).
  fib(1, 1).
  fib(N, F) :-
    N > 1,
    N1 is N - 1,
    N2 is N - 2,
    fib(N1, F1),
    fib(N2, F2),
    F is F1 + F2.
  ```

 Can only be used with the first argument instantiated to a number
Fibonacci Revisited (CLP(ℜ))

- CLP(ℜ) version: syntactically similar to the previous one

 fib(0, 0).
 fib(1, 1).
 fib(N, F₁ + F₂) :-
 N > 1, F₁ >= 0, F₂ >= 0,
 fib(N - 1, F₁), fib(N - 2, F₂).

- Note all constraints included in program (F₁ >= 0, F₂ >= 0) – good practice!

- Only real numbers and equations used (no data structures, no other constraint system): “pure CLP(ℜ)”

- Semantics greatly enhanced! E.g.

 ?- fib(N, F).
 F = 0, N = 0 ;
 F = 1, N = 1 ;
 F = 1, N = 2 ;
 F = 2, N = 3 ;
 F = 3, N = 4 ;
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- Analysis and synthesis of analog circuits
- RLC network in steady state
- Each circuit is composed either of:
 - A simple component, or
 - A connection of simpler circuits
- For simplicity, we will suppose subnetworks connected only in parallel and series → Ohm’s laws will suffice (other networks need global, i.e., Kirchoff’s laws)
- We want to relate the current (\(I\)), voltage (\(V\)) and frequency (\(\omega\)) in steady state
- Entry point: \(\text{circuit}(C, V, I, \omega)\) states that:
 - across the network \(C\), the voltage is \(V\), the current is \(I\) and the frequency is \(\omega\)
 - \(V\) and \(I\) must be modeled as complex numbers (the imaginary part takes into account the angular frequency)
- Note that Herbrand terms are used to provide data structures
Analog RLC circuits (CLP(\(\mathbb{R}\)))

- **Complex number** \(X + Yi\) modeled as \(c(X, Y)\)
- **Basic operations:**

\[
\text{c_add}(c(\text{Re1}, \text{Im1}), c(\text{Re2}, \text{Im2}), c(\text{Re1}+\text{Re2}, \text{Im1}+\text{Im2})).
\]

\[
\text{c_mult}(c(\text{Re1}, \text{Im1}), c(\text{Re2}, \text{Im2}), c(\text{Re3}, \text{Im3})) :-
\text{Re3} = \text{Re1} * \text{Re2} - \text{Im1} * \text{Im2},
\text{Im3} = \text{Re1} * \text{Im2} + \text{Re2} * \text{Im1}.
\]

(equality is \(\text{c_equal}(c(R, I), c(R, I))\), can be left to [extended] unification)
Analog RLC circuits (CLP(\(\mathbb{R}\)))

Circuits in series:

\[
\text{circuit(series}(N1, N2), V, I, W) :- \\
\quad \text{c_add}(V1, V2, V), \\
\quad \text{circuit}(N1, V1, I, W), \\
\quad \text{circuit}(N2, V2, I, W).
\]

Circuits in parallel:

\[
\text{circuit(parallel}(N1, N2), V, I, W) :- \\
\quad \text{c_add}(I1, I2, I), \\
\quad \text{circuit}(N1, V, I1, W), \\
\quad \text{circuit}(N2, V, I2, W).
\]
Analog RLC circuits (CLP(ℜ))

Each basic component can be modeled as a separate unit:

- **Resistor:** \(V = I \times (R + 0i) \)

 \[
 \text{circuit}(\text{resistor}(R), V, I, _W) :- \\
 \text{c_mult}(I, c(R, 0), V).
 \]

- **Inductor:** \(V = I \times (0 + WL_i) \)

 \[
 \text{circuit}(\text{inductor}(L), V, I, W) :- \\
 \text{c_mult}(I, c(0, W * L), V).
 \]

- **Capacitor:** \(V = I \times (0 - \frac{1}{WC}i) \)

 \[
 \text{circuit}(\text{capacitor}(C), V, I, W) :- \\
 \text{c_mult}(I, c(0, -1 / (W * C)), V).
 \]
Analog RLC circuits (CLP(\mathbb{R}))

Example:

\[\begin{array}{c}
\text{R} = \? \\
\text{C} = \? \\
\text{V} = 4.5 \\
\text{I} = 0.65 \\
\text{L} = 0.073 \\
\end{array} \]

?- circuit(parallel(inductor(0.073), series(capacitor(C), resistor(R))), c(4.5, 0), c(0.65, 0), 2400).

\[\begin{array}{c}
\text{R} = 6.91229, \quad \text{C} = 0.00152546 \\
\end{array} \]

?- circuit(C, c(4.5, 0), c(0.65, 0), 2400).
The N Queens Problem

- **Problem:**
 place N chess queens in a $N \times N$ board such that they do not attack each other

- **Data structure:** a list holding the column position for each row

- **The final solution is a permutation of the list $[1, 2, \ldots, N]$**

- **E.g.:** the solution $[[2, 4, 1, 3]]$ is represented as $[2, 4, 1, 3]$

- **General idea:**
 - Start with partial solution
 - Nondeterministically select new queen
 - Check safety of new queen against those already placed
 - Add new queen to partial solution if compatible; start again with new partial solution
The N Queens Problem (Prolog)

queens(N, Qs) :- queens_list(N, Ns), queens(Ns, [], Qs).

queens([], Qs, Qs).
queens(Unplaced, Placed, Qs) :-
 select(Unplaced, Q, NewUnplaced), no_attack(Placed, Q, 1),
 queens(NewUnplaced, [Q|Placed], Qs).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 Queen =\= Y + Nb, Queen =\= Y - Nb, Nb1 is Nb + 1,
 no_attack(Ys, Queen, Nb1).

select([X|Ys], X, Ys).
select([Y|Ys], X, [Y|Zs]) :- select(Ys, X, Zs).

queens_list(0, []).
queens_list(N, [N|Ns]) :- N > 0, N1 is N - 1, queens_list(N1, Ns).
The N Queens Problem (Prolog)
The N Queens Problem (CLP(ℜ))

queens(N, Qs) :- constrain_values(N, N, Qs), place_queens(N, Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
 N > 0, X > 0, X <= Range,
 constrain_values(N - 1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
 abs(Queen - (Y + Nb)) > 0, % Queen =\= Y + Nb
 abs(Queen - (Y - Nb)) > 0, % Queen =\= Y - Nb
 no_attack(Ys, Queen, Nb + 1).

place_queens(0, _).
place_queens(N, Q) :- N > 0, member(N, Q), place_queens(N - 1, Q).

member(X, [X|_]).
member(X, [_|Xs]) :- member(X, Xs).
The N Queens Problem (CLP(ℜ))

This last program can attack the problem in its most general instance:

?- queens(M,N).
N = [], M = 0 ;
M = [1], M = 1 ;
N = [2, 4, 1, 3], M = 4 ;
N = [3, 1, 4, 2], M = 4 ;
N = [5, 2, 4, 1, 3], M = 5 ;
N = [5, 3, 1, 4, 2], M = 5 ;
N = [3, 5, 2, 4, 1], M = 5 ;
N = [2, 5, 3, 1, 4], M = 5
...

Remark: Herbrand terms used to build the data structures

But also used as constraints (e.g., length of already built list Xs in no_attack(Xs, X, 1))

Note that in fact we are using both ℜ and FT
The N Queens Problem (CLP(ℜ))
The N Queens Problem (CLP(ℜ))

- CLP(ℜ) generates internally a set of equations for each board size
- They are non-linear and are thus delayed until instantiation wakes them up

```prolog
?- constrain_values(4, 4, Q).
Q = [_t3, _t5, _t13, _t21]
_t3 <= 4 0 < abs(-_t13 + _t3 - 2)
_t5 <= 4 0 < abs(-_t13 + _t3 + 2)
_t13 <= 4 0 < abs(-_t21 + _t3 - 3)
_t21 <= 4 0 < abs(-_t21 + _t3 + 3)
0 < _t3 0 < abs(-_t13 + _t5 - 1)
0 < _t5 0 < abs(-_t13 + _t5 + 1)
0 < _t13 0 < abs(-_t21 + _t5 - 2)
0 < _t21 0 < abs(-_t21 + _t5 + 2)
0 < abs(-_t5 + _t3 - 1) 0 < abs(-_t21 + _t13 - 1)
0 < abs(-_t5 + _t3 + 1) 0 < abs(-_t21 + _t13 + 1)
```
The N Queens Problem (CLP(ℜ))

- Constraints are (incrementally) simplified as new queens are added

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,1|OQs].
OQs = [_t16, _t24] 0 < abs(-_t24)
Qs = [3, 1, _t16, _t24] 0 < abs(-_t24 + 6)
_t16 <= 4 0 < abs(-_t16)
_t24 <= 4 0 < abs(-_t16 + 2)
0 < _t16 0 < abs(-_t24 - 1)
0 < _t24 0 < abs(-_t24 + 3)
0 < abs(-_t16 + 1) 0 < abs(-_t24 + _t16 - 1)
0 < abs(-_t16 + 5) 0 < abs(-_t24 + _t16 + 1)
```

- Bad choices are rejected using constraint consistency:

```prolog
?- constrain_values(4, 4, Qs), Qs = [3,2|OQs].
*** No
```
Finite Domains (I)

- A finite domain constraint solver associates each variable with a finite subset of \(\mathbb{Z} \)
- I.e., \(E \in \{-123, -10..4, 10\} \)
 (represented as \(E :: [-123, -10..4, 10] \) [Eclipse notation] or as \(E \ in \{-123\} \ \vee \ (-10..4) \ \vee \ \{10\} \) [SICStus notation])

We can:
- Perform arithmetic operations (+, −, ∗, /) on the variables
- Establish linear relationships among arithmetic expressions (\# =, \# <, \# =<)

Those operations / relationships are intended to narrow the domains of the variables

Note: SICStus requires the use of the
:- use_module(library(clpfd)).
directive in the source code
Finite Domains (II)

- Example:

 ?- X #= A + B, A in 1..3, B in 3..7.

 X in 4..10, A in 1..3, B in 3..7

- The respective minimums and maximums are added

- There is no unique solution

 ?- X #= A - B, A in 1..3, B in 3..7.

 X in -6..0, A in 1..3, B in 3..7

- The minimum value of X is the minimum value of A minus the maximum value of B

 (Similar for the maximum values)

- Putting more constraints:

 ?- X #= A - B, A in 1..3, B in 3..7, X #>= 0.

 A = 3, B = 3, X = 0
Finite Domains (III)

Some useful primitives in finite domains:

- **fd_min(X, T):** the term T is the minimum value in the domain of the variable X
 - This can be used to minimize (c.f., maximize) a solution

  ```prolog
  ?- X #= A - B, A in 1..3, B in 3..7, fd_min(X, X).
  A = 1, B = 7, X = -6
  ```

- **domain(Variables, Min, Max):** A shorthand for several in constraints

- **labeling(Options, VarList):**
 - instantiates variables in VarList to values in their domains
 - Options dictates the search order

```prolog
?- X*X+Y*Y#=Z*Z, X#>=Y, domain([X, Y, Z],1,1000),labeling([], [X, Y, Z]).
X = 4, Y = 3, Z = 5
X = 8, Y = 6, Z = 10
X = 12, Y = 5, Z = 13
...```

...
The job whose dependencies and task lengths are given by: should be finished in 10 time units or less

Constraints:
\[ \text{pn1}(A,B,C,D,E,F,G) :- \]
\[ A \geq 0, \quad G \leq 10, \]
\[ B \geq A, \quad C \geq A, \quad D \geq A, \]
\[ E \geq B + 1, \quad E \geq C + 2, \]
\[ F \geq C + 2, \quad F \geq D + 3, \]
\[ G \geq E + 4, \quad G \geq F + 1. \]
A Project Management Problem (II)

Query:

?- pn1(A,B,C,D,E,F,G).
A in 0..4, B in 0..5, C in 0..4,
D in 0..6, E in 2..6, F in 3..9, G in 6..10,

Note the slack of the variables

Some additional constraints must be respected as well, but are not shown by default

Minimize the total project time:

?- pn1(A,B,C,D,E,F,G), fd_min(G, G).
A = 0, B in 0..1, C = 0, D in 0..2,
E = 2, F in 3..5, G = 6

Variables without slack represent critical tasks
An alternative setting:

We can accelerate task F at some cost

\[\text{pn2}(A, B, C, D, E, F, G, X) \leftarrow \]
\[A \geq 0, \quad G \leq 10, \]
\[B \geq A, \quad C \geq A, \quad D \geq A, \]
\[E \geq B + 1, \quad E \geq C + 2, \]
\[F \geq C + 2, \quad F \geq D + 3, \]
\[G \geq E + 4, \quad G \geq F + X. \]

We do not want to accelerate it more than needed!

?- \text{pn2}(A, B, C, D, E, F, G, X),
  \text{fd\_min}(G,G), \text{fd\_max}(X, X).
A = 0, B in 0..1, C = 0, D = 0,
E = 2, F = 3, G = 6, X = 3
A Project Management Problem (IV)

- We have two independent tasks $B$ and $D$ whose lengths are not fixed:

- We can finish any of $B$, $D$ in 2 time units at best

- Some shared resource disallows finishing both tasks in 2 time units: they will take 6 time units
A Project Management Problem (V)

Constraints describing the net:

\[
\text{pn3}(A,B,C,D,E,F,G,X,Y) :- \\
\quad A \#>= 0, \ G \#=< 10, \\
\quad X \#>= 2, \ Y \#>= 2, \ X + Y \#= 6, \\
\quad B \#>= A, \ C \#>= A, \ D \#>= A, \\
\quad E \#>= B + X, \ E \#>= C + 2, \\
\quad F \#>= C + 2, \ F \#>= D + Y, \\
\quad G \#>= E + 4, \ G \#>= F + 1. \\
\]

Query:  
\[- \text{pn3}(A,B,C,D,E,F,G,X,Y), \text{fd}_{\text{min}}(G,G). \]
\[
A = 0, \ B = 0, \ C = 0, \ D \text{ in } 0..1, \ E = 2, \ F \text{ in } 4..5, \ X = 2, \ Y = 4, \ G = 6 \\
\]

i.e., we must devote more resources to task \( B \)

All tasks but \( F \) and \( D \) are critical now

Sometimes, \( \text{fd}_{\text{min}}/2 \) not enough to provide best solution (pending constraints):  
\[
\text{pn3}(A,B,C,D,E,F,G,X,Y), \\
l\text{abeling([ff, minimize(G)], [A,B,C,D,E,F,G,X,Y])}. \\
\]
The N-Queens Problem Using Finite Domains (in SICStus Prolog)

By far, the fastest implementation
queens(N, Qs, Type) :-
    constrain_values(N, N, Qs),
    all_different(Qs), % built-in constraint
    labeling(Type,Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-
    N > 0, N1 is N - 1, X in 1 .. Range,
    constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-
    Queen #\= Y + Nb, Queen #\= Y - Nb, Nb1 is Nb + 1,
    no_attack(Ys, Queen, Nb1).

Query. Type is the type of search desired.
?- queens(20, Q, [ff]).
Q = [1,3,5,14,17,4,16,7,12,18,15,19,6,10,20,11,8,2,13,9] ?
CLP($\mathcal{FT}$) (a.k.a. Logic Programming)

- Equations over Finite Trees
- Check that two trees are isomorphic (same elements in each level)

```prolog
iso(Tree, Tree).
iso(t(R, I1, D1), t(R, I2, D2)) :-
 iso(I1, D2),
 iso(D1, I2).

?- iso(t(a, b, t(X, Y, Z)), t(a, t(u, v, W), L)).
L=b, X=u, Y=v, Z=W ? ;
L=b, X=u, Y=W, Z=v ? ;
L=b, W=t(_C,_B,_A), X=u, Y=t(_C,_A,_B), Z=v ? ;
L=b, W=t(_E,t(_D,_C,_B),_A), X=u, Y=t(_E,_A,t(_D,_B,_C)), Z=v ?
```

46
Equations over finite strings

Primitive constraints: concatenation (.), string length (::)

Find strings meeting some property:

?- "123".z = z."231", z::0.  
no

?- "123".z = z."231", z::3.  
no

?- "123".z = z."231", z::1.  
z = "1"

?- "123".z = z."231", z::4.  
z = "1231"

?- "123".z = z."231", z::2.  
no

These constraint solvers are very complex

Often incomplete algorithms are used
Word equations plus arithmetic over \( Q \) (rational numbers)

Prove that the sequence \( x_{i+2} = |x_{i+1}| - x_i \) has a period of length 9 (for any starting \( x_0, x_1 \))

Strategy: describe the sequence, try to find a subsequence such that the period condition is violated

Sequence description (syntax is Prolog III slightly modified):

\[
\begin{align*}
\text{seq}(<Y, X>). & \quad \text{abs}(Y, Y) :- Y \geq 0. \\
\text{seq}(<Y1 - X, Y, X>.U) :- & \quad \text{abs}(Y, -Y) :- Y < 0. \\
& \quad \text{seq}(<Y, X>.U) \\
& \quad \text{abs}(Y, Y1).
\end{align*}
\]

Query: Is there any 11–element sequence such that the 2–tuple initial seed is different from the 2–tuple final subsequence (the seed of the rest of the sequence)?

?– \text{seq}(U.V.W), U::2, V::7, W::2, U\#W.
fail
Summarizing

- In general:
  - Data structures (Herbrand terms) for free
  - Each logical variable may have constraints associated with it (and with other variables)

- Problem modeling:
  - Rules represent the problem at a high level
    - Program structure, modularity
    - Recursion used to set up constraints
  - Constraints encode problem conditions
  - Solutions also expressed as constraints

- Combinatorial search problems:
  - CLP languages provide backtracking: enumeration is easy
  - Constraints keep the search space manageable

- Tackling a problem:
  - Keep an open mind: often new approaches possible
Complex Constraints

- Some complex constraints allow expressing simpler constraints
- May be operationally treated as passive constraints
- E.g.: cardinality operator \( \#(L, [c_1, \ldots, c_n], U) \) meaning that the number of true constraints lies between \( L \) and \( U \) (which can be variables themselves)
  - If \( L = U = n \), all constraints must hold
  - If \( L = U = 1 \), one and only one constraint must be true
  - Constraining \( U = 0 \), we force the conjunction of the negations to be true
  - Constraining \( L > 0 \), the disjunction of the constraints is specified
- Disjunctive constructive constraint: \( c_1 \lor c_2 \)
  - If properly handled, avoids search and backtracking

E.g.: 

\[
\begin{align*}
nz(X) & \leftarrow X > 0. \\
nz(X) & \leftarrow X < 0. \\
nz(X) & \leftarrow X < 0 \lor X > 0.
\end{align*}
\]
Other Primitives

- CLP(\(\mathcal{X}\)) systems usually provide additional primitives
  - E.g.:
    - \texttt{enum(X)} enumerates \(X\) inside its current domain
    - \texttt{maximize(X) (c.f. minimize(X))} works out maximum (minimum value) for \(X\) under the active constraints
    - \texttt{delay Goal until Condition} specifies when the variables are instantiated enough so that \texttt{Goal} can be effectively executed
      - Its use needs deep knowledge of the constraint system
      - Also widely available in Prolog systems
      - Not really a constraint: control primitive
Implementation Issues: Satisfiability

- Algorithms must be *incremental* in order to be practical
- Incrementality refers to the performance of the algorithm
- It is important that algorithms to decide satisfiability have a good average case behavior
- Common technique: use a *solved form* representation for satisfiable constraints
- Not possible in every domain
- E.g. in $\mathcal{FT}$ constraints are represented in the form $x_1 = t_1(\tilde{y}), \ldots, x_n = t_n(\tilde{y})$, where
  - each $t_i(\tilde{y})$ denotes a term structure containing variables from $\tilde{y}$
  - no variable $x_i$ appears in $\tilde{y}$

(i.e., idempotent substitutions, guaranteed by the unification algorithm)
Implementation Issues: Backtracking in CLP($\mathcal{X}$)

- Implementation of backtracking more complex than in Prolog
- Need to record changes to constraints
- Constraints typically stored as an association of variable to expression
- Trailing expressions is, in general, costly: cannot be stored at every change
- Avoid trailing when there is no choice point between two successive changes
- A standard technique: use time stamps to compare the age of the choice point with the age of the variable at the time of last trailing

\[
\begin{align*}
X &< 9, \ Y = 5, \ Z = 4, \ W = 1 & \text{trail } W, \ \text{timestamp it} \\
X &< Y + 4, \ Y = 4 + W, \ Z = 4 & \text{trail } X, \ Y, \ Z, \ \text{timestamp them} \\
X &< Y + Z, \ Y = Z + W & \text{timestamp } X, \ Y, \ Z, \ W
\end{align*}
\]
Implementation Issues: Extensibility

- Constraint domains often implemented now in Prolog-based systems using:
  - Attributed variables [Neumerkel,Holzbaur]:
    - Provide a hook into unification.
    - Allow attaching an *attribute* to a variable.
    - When unification with that variable occurs, user-defined code is called.
    - Used to implement constraint solvers (and other applications, e.g., distributed execution).
  - Constraint handling rules (CHRs):
    - Higher-level abstraction.
    - Allows defining propagation algorithms (e.g., constraint solvers) in a high-level way.
    - Often translated to attributed variable-based low-level code.
Attributed Variables Example: Freeze

Primitives:

- `attach_attribute(X,C)`
- `get_attribute(X,C)`
- `detach_attribute(X)`
- `update_attribute(X,C)`
- `verify_attribute(C,T)`
- `combine_attributes(C1,C2)`

Example: Freeze

```
freeze(X, Goal) :-
 attach_attribute(V, frozen(V,Goal)),
 X = V.

verify_attribute(frozen(Var,Goal), Value) :-
 detach_attribute(Var),
 Var = Value,
 call(Goal).

combine_attributes(frozen(V1,G1), frozen(V2,G2)) :-
 detach_attribute(V1),
 detach_attribute(V2),
 V1 = V2,
 attach_attribute(V1, frozen(V1,(G1,G2))).
```
Programming Tips

- Over-constraining:
  - Seems to be against general advice “do not perform extra work”, but can actually cut more space search
  - Specially useful if infer is weak
  - Or else, if constraints outside the domain are being used

- Use control primitives (e.g., cut) very sparingly and carefully

- Determinacy is more subtle, (partially due to constraints in non–solved form)

- Choosing a clause does not preclude trying other exclusive clauses (as with Prolog and plain unification)

- Compare:

  max(X,Y,X) :- X > Y.               ?- max(X, Y, Z).
  max(X,Y,Y) :- X <= Y.              Z = X, Y < X ;

  with

  max(X,Y,X) :- X > Y, !.           ?- max(X, Y, Z).
  max(X,Y,Y) :- X <= Y.              Z = X, Y < X
Some Real Systems (I)

- CLP defines a class of languages obtained by
  - Specifying the particular constraint system(s)
  - Specifying *Computation* and *Selection* rules

- Most share the Herbrand domain with “=”, but add different domains and/or solver algorithms

- Most use *Computation* and *Selection* rules of Prolog

- **CLP(ℜ):**
  - Linear arithmetic over reals (\(=, \leq, >\))
  - Gauss elimination and an adaptation of Simplex

- **PrologIII:**
  - Linear arithmetic over rationals (\(=, \leq, >, \neq\)), Simplex
  - Boolean (\(=\)), 2-valued Boolean Algebra
  - Infinite (rational) trees (\(=, \neq\))
  - Equations over finite strings
Some Real Systems (II)

**CHIP:**
- Linear arithmetic over rationals ($=, \leq, >, \neq$), Simplex
- Boolean ($=$), larger Boolean algebra (symbolic values)
- Finite domains
- User–defined constraints and solver algorithms

**BNR-Prolog:**
- Arithmetic over reals (closed intervals) ($=, \leq, >, \neq$), Simplex, propagation techniques
- Boolean ($=$), 2-valued Boolean algebra
- Finite domains, consistency techniques under user–defined strategy

**SICStus 3:**
- Linear arithmetic over reals ($=, \leq, >, \neq$)
- Linear arithmetic over rationals ($=, \leq, >, \neq$)
- Finite domains (in recent versions)
Some Real Systems (III)

- **ECL\textsuperscript{iPS\textsuperscript{e}}:**
  - Finite domains
  - Linear arithmetic over reals (\(=, \leq, >, \neq\))
  - Linear arithmetic over rationals (\(=, \leq, >, \neq\))

- **clp(FD)/gprolog:**
  - Finite domains

- **RISC–CLP:**
  - Real arithmetic terms: any arithmetic constraint over reals
  - Improved version of Tarski’s quantifier elimination

- **Ciao:**
  - Linear arithmetic over reals (\(=, \leq, >, \neq\))
  - Linear arithmetic over rationals (\(=, \leq, >, \neq\))
  - Finite Domains (currently interpreted)

(can be selected on a per-module basis)